209 research outputs found

    Localization and variable expression of Gαi2 in human endometrium and Fallopian tubes

    Get PDF
    Background: Heterotrimeric G proteins take part in membrane-mediated cell signalling and have a role in hormonal regulation. This study clarifies the expression and localization of the G protein subunit Gαi2 in the human endometrium and Fallopian tube and changes in Gαi2 expression in human endometrium during the menstrual cycle. Methods: The expression of Gαi2 was identified by Polymerase chain reaction (PCR), and localization confirmed by immunostaining. Cyclic changes in Gαi2 expression during the menstrual cycle were evaluated by quantitative real-time PCR. Results: We found Gαi2 to be expressed in human endometrium, Fallopian tube tissue and in primary cultures of Fallopian tube epithelial cells. Our studies revealed enriched localization of Gαi2 in Fallopian tube cilia and in endometrial glands. We showed that Gαi2 expression in human endometrium changes significantly during the menstrual cycle, with a higher level in the secretory versus proliferative and menstrual phases (P < 0.05). Conclusions: Gαi2 is specifically localized in human Fallopian tube epithelial cells, particularly in the cilia, and is likely to have a cilia-specific role in reproduction. Significantly variable expression of Gαi2 during the menstrual cycle suggests Gαi2 might be under hormonal regulation in the female reproductive tract in vivo. © 2007 Oxford University Press.postprin

    On the stability of high-speed milling with spindle speed variation

    Get PDF
    Spindle speed variation is a well-known technique to suppress regenerative machine tool vibrations, but it is usually considered to be effective only for low spindle speeds. In this paper, the effect of spindle speed variation is analyzed in the high-speed domain for spindle speeds corresponding to the first flip (period doubling) and to the first Hopf lobes. The optimal amplitudes and frequencies of the speed modulations are computed using the semidiscre- tization method. It is shown that period doubling chatter can effectively be suppressed by spindle speed variation, although, the technique is not effective for the quasiperiodic chatter above the Hopf lobe. The results are verified by cutting tests. Some special cases are also discussed where the practical behavior of the system differs from the predicted one in some ways. For these cases, it is pointed out that the concept of stability is understood on the scale of the principal period of the system—that is, the speed modulation period for variable spindle speed machining and the tooth passing period for constant spindle speed machining

    Epstein-Barr Virus Associated Modulation of Wnt Pathway Is Not Dependent on Latent Membrane Protein-1

    Get PDF
    Previous studies have indicated that Epstein-Barr virus (EBV) can modulate the Wnt pathway in virus-infected cells and this effect is mediated by EBV-encoded oncogene latent membrane protein 1 (LMP1). Here we have reassessed the role of LMP1 in regulating the expression of various mediators of the canonical Wnt cascade. Contradicting the previous finding, we found that the levels of E-cadherin, β-catenin, Glycogen Synthase Kinase 3ß (GSK3β), axin and α-catenin were not affected by the expression of LMP1 sequences from normal B cells or nasopharyngeal carcinoma. Moreover, we also show that LMP1 expression had no detectable effect on the E-cadherin and β-catenin interaction and did not induce transcriptional activation of β-catenin. Taken together these studies demonstrate that EBV-mediated activation of Wnt pathway is not dependent on the expression of LMP1

    Epidemiology of Acute Myocarditis/Pericarditis in Hong Kong Adolescents Following Comirnaty Vaccination

    Get PDF
    BACKGROUND: Age-specific incidence of acute myocarditis/pericarditis in adolescents following Comirnaty vaccination in Asia is lacking. This study aimed to study the clinical characteristics and incidence of acute myocarditis/pericarditis among Hong Kong adolescents following Comirnaty vaccination. METHODS: This is a population cohort study in Hong Kong that monitored adverse events following immunization through a pharmacovigilance system for COVID-19 vaccines. All adolescents aged between 12 and 17 years following Comirnaty vaccination were monitored under the COVID-19 vaccine Adverse Event Response and Evaluation Programme. The clinical characteristics and overall incidence of acute myocarditis/pericarditis in adolescents following Comirnaty vaccination were analysed. RESULTS: Between 14 June 2021 and 4 September 2021, 33 Chinese adolescents who developed acute myocarditis/pericarditis following Comirnaty vaccination were identified. 29 (87.88%) were males and 4 (12.12%) were females, with a median age of 15.25 years. 27 (81.82%) and 6 (18.18%) cases developed acute myocarditis/pericarditis after receiving the second and first dose, respectively. All cases are mild and required only conservative management.The overall incidence of acute myocarditis/pericarditis was 18.52 (95% Confidence Interval [CI], 11.67-29.01) per 100,000 persons vaccinated. The incidence after the first and second doses were 3.37 (95%CI 1.12-9.51) and 21.22 (95%CI 13.78-32.28 per 100,000 persons vaccinated, respectively. Among male adolescents, the incidence after the first and second doses were 5.57 (95% CI 2.38-12.53) and 37.32 (95% CI 26.98-51.25) per 100,000 persons vaccinated. CONCLUSIONS: There is a significant increase in the risk of acute myocarditis/pericarditis following Comirnaty vaccination among Chinese male adolescents, especially after the second dose

    Separate cortical stages in amodal completion revealed by functional magnetic resonance adaptation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Objects in our environment are often partly occluded, yet we effortlessly perceive them as whole and complete. This phenomenon is called visual amodal completion. Psychophysical investigations suggest that the process of completion starts from a representation of the (visible) physical features of the stimulus and ends with a completed representation of the stimulus. The goal of our study was to investigate both stages of the completion process by localizing both brain regions involved in processing the physical features of the stimulus as well as brain regions representing the completed stimulus.</p> <p>Results</p> <p>Using fMRI adaptation we reveal clearly distinct regions in the visual cortex of humans involved in processing of amodal completion: early visual cortex – presumably V1 -processes the local contour information of the stimulus whereas regions in the inferior temporal cortex represent the completed shape. Furthermore, our data suggest that at the level of inferior temporal cortex information regarding the original local contour information is not preserved but replaced by the representation of the amodally completed percept.</p> <p>Conclusion</p> <p>These findings provide neuroimaging evidence for a multiple step theory of amodal completion and further insights into the neuronal correlates of visual perception.</p

    Amplification of telomerase (hTERT) gene is a poor prognostic marker in non-small-cell lung cancer

    Get PDF
    Telomerase reactivation is a hallmark of human carcinogenesis. Increased telomerase activity may result from gene amplification and/or overexpression. This study evaluates the prognostic value of hTERT gene amplification and mRNA overexpression in 144 resectable non-small-cell lung cancer (NSCLC) specimens. The hTERT gene copy number was assessed by quantitative polymerase chain reaction (qPCR) on laser-capture microdissected tumour cells of 81 tumours, and by fluorescence in situ hybridisation (FISH) on a subset of 59 tumours. hTERT mRNA level was determined by reverse transcription (RT)–qPCR in 130 tumours. In total, 57% of (46 out of 81) primary NSCLC specimens demonstrated hTERT amplification, which was significantly more common (P<0.001) in adenocarcinoma (30 out of 40) than in squamous cell carcinoma (13 out of 37). The hTERT mRNA overexpression was noted in 74% (94 out of 130) of tumours; it was more frequent in squamous cell than in adenocarcinoma (87 vs 68%, P=0.03). Overexpression was significantly associated with amplification (P=0.03), especially in adenocarcinoma. The hTERT gene amplification was prognostic for shorter recurrence-free survival (hazard ratio=2.16, P=0.03). These data indicate that gene amplification is an important mechanism for hTERT overexpression in lung adenocarcinoma and is an independent poor prognostic marker for disease-free survival in NSCLC

    Get Phases from Arsenic Anomalous Scattering: de novo SAD Phasing of Two Protein Structures Crystallized in Cacodylate Buffer

    Get PDF
    The crystal structures of two proteins, a putative pyrazinamidase/nicotinamidase from the dental pathogen Streptococcus mutans (SmPncA) and the human caspase-6 (Casp6), were solved by de novo arsenic single-wavelength anomalous diffraction (As-SAD) phasing method. Arsenic (As), an uncommonly used element in SAD phasing, was covalently introduced into proteins by cacodylic acid, the buffering agent in the crystallization reservoirs. In SmPncA, the only cysteine was bound to dimethylarsinoyl, which is a pentavalent arsenic group (As (V)). This arsenic atom and a protein-bound zinc atom both generated anomalous signals. The predominant contribution, however, was from the As anomalous signals, which were sufficient to phase the SmPncA structure alone. In Casp6, four cysteines were found to bind cacodyl, a trivalent arsenic group (As (III)), in the presence of the reducing agent, dithiothreitol (DTT), and arsenic atoms were the only anomalous scatterers for SAD phasing. Analyses and discussion of these two As-SAD phasing examples and comparison of As with other traditional heavy atoms that generate anomalous signals, together with a few arsenic-based de novo phasing cases reported previously strongly suggest that As is an ideal anomalous scatterer for SAD phasing in protein crystallography

    Reduced expression of intercellular adhesion molecule-1 in ovarian adenocarcinomas

    Get PDF
    Ovarian adenocarcinomas develop as the result of multiple genetic and epigenetic changes in the precursor ovarian surface epithelial (OSE) cells which result in a malignant phenotype. We investigated changes in gene expression in ovarian adenocarcinoma using a cDNA array containing 588 known human genes. We found that intercellular adhesion molecule-1 (ICAM-1) was expressed at lower levels in the ovarian tumour cell lines OAW42, PEO1 and JAM than in the immortalised human ovarian surface epithelial cell line HOSE 17.1. Further investigation revealed ICAM-1 was expressed in the surface epithelium of normal ovaries and both mRNA and protein expression levels were reduced in the majority of ovarian adenocarcinoma cell lines and primary tumours. ICAM-1 expression was increased in 8/8 cell lines treated with the de novo methyltransferase inhibitor 5-aza-2′-deoxycytidine, indicating that methylation of CpG islands may play a role in the down-regulation of its expression in primary tumours. There was a significant association between patients whose tumours expressed ICAM-1 and survival (P= 0.03), suggesting that expression levels of ICAM-1 may have clinical relevance. © 2001 Cancer Research Campaig
    corecore