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Localization and variable expression of Gαi2 in human endometrium and 

fallopian tubes 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

 

Kati S. Mönkkönen1, 2, Reza Aflatoonian2, Kai-Fai Lee3, William S.B. Yeung3, Sai-Wah 

Tsao4, Jarmo T. Laitinen5, Elizabeth M Tuckerman6, T.C. Li6, Alireza Fazeli2 

 

 

1 Department of Pharmacology & Toxicology, University of Kuopio, Kuopio, FIN-70211, 

Finland 

2 Academic Unit of Reproductive and Developmental Medicine, The University of Sheffield, 

Level 4, Jessop Wing, Tree Root Walk, Sheffield S10 2SF, UK,  

3 Department of Obstetrics and Gynaecology, The University of Hong Kong, Pokfulam, Hong 

Kong. 

4 Department of Anatomy, The University of Hong Kong, Pokfulam, Hong Kong. 

5 Institute of Biomedicine, Department of Physiology, University of Kuopio, Kuopio, FIN-

70211, Finland 

6 Biomedical Research Unit, Jessop Wing, Sheffield S10 2SF, UK 

 

Corresponding author: 

Alireza Fazeli, Academic Unit of Reproductive and Developmental Medicine, The University 

of Sheffield, Level 4, The Jessop Wing, Sheffield S10 2SF, UK. Tel. +44 114 226 8195, Fax 

+44 114 226 1074, E-mail: a.fazeli@sheffield.ac.uk 

 

 

Running title: Gαi2 in human reproductive tissues  



Confidential 2

Abstract:   26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

BACKGROUND: Heterotrimeric G proteins take part in membrane-mediated cell-signalling 

and have a role in e.g. hormonal regulation. This study clarifies the expression and 

localization of the G protein subunit Gαi2 in the human endometrium and fallopian tube and 

changes in Gαi2 expression in human endometrium during the menstrual cycle. METHODS: 

The expression of Gαi2 was identified by PCR, and localization confirmed by immunostaining. 

Cyclic changes in Gαi2 expression during the menstrual cycle were evaluated by quantitative 

real time PCR. RESULTS: We found Gαi2 to be expressed in human endometrium, fallopian 

tube tissue and fallopian tube primary epithelial cells. Our studies revealed enriched 

localization of Gαi2 in human fallopian tube cilia and in endometrial glands. We showed that 

Gαi2 expression in human endometrium changes significantly during the menstrual cycle. 

CONCLUSIONS: Gαi2 is specifically localized in oviductal cilia of rat and human and is 

likely to have a cilia-specific role in reproduction. Significantly variable expression of Gαi2 

during the menstrual cycle suggests it might be under hormonal regulation in the female 

reproductive tract in vivo.  
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Among the cell-surface receptors, G protein-coupled receptors are the most widespread and 

diverse, playing an essential regulatory role in cell growth, hormonal regulation, sensory 

perception and neuronal activity (Hepler and Gilman, 1992). In reproduction, G protein-

coupled receptors have a neuroendocrine regulatory role in gonadotropin-releasing hormone 

(GnRH) -induced secretion of luteinising hormone (LH) and follicle-stimulating hormone 

(FSH) from the anterior pituitary gland (Chi et al., 1993; Tsutsumi et al., 1992). In gonads, G 

protein-coupled receptors mediate gonadotropin signalling (Loosfelt et al., 1989; McFarland 

et al., 1989; Minegishi et al., 1991; Minegishi et al., 1990; Sprengel et al., 1990), thus 

regulating the synthesis and secretion of sex hormones. 

 

G protein-coupled receptors communicate via heterotrimeric G proteins, which are recognized 

as crucial elements in various types of membrane-mediated cell-signalling. Heterotrimeric G 

proteins consist of α-, β- and γ-subunits. According to the α-subunits, G proteins are divided 

into four classes (Gs, Gi, Gq and G12) (Hepler and Gilman, 1992). Proteins of the Gi family are 

the most diverse and interact with a wide variety of G protein-coupled receptors. For example, 

they take part in hormonal regulation via interaction with GnRH (Hawes et al., 1993; 

Krsmanovic et al., 2003; Krsmanovic et al., 2001; Stanislaus et al., 1998), FSH (Arey et al., 

1997) and LH receptors (Herrlich et al., 1996). Moreover, Gi family proteins play a role in the 

signal transduction of rapid, nongenomic actions of estrogen (Benten et al., 2001) and 

progesterone (Karteris et al., 2006; Zhu et al., 2003). 

 

The dual balance between Gi and Gs signalling in the regulation of adenylyl cyclase has been 

well established. Proteins of Gi-family can inhibit adenylyl cyclase (AC) and thus decrease 
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intracellular cAMP concentration (Bokoch et al., 1984; Katada et al., 1984). Via this pathway, 

Gi-family protein Gαi2 has been shown to take part in adrenergic signalling, controlling 

myometrium relaxation in the rat during pregnancy (Mhaouty et al., 1995). In the human 

myometrium, the levels of Gαi2 have been shown to decrease during pregnancy, suggesting 

that the consequent, altered balance between Gαi2 and Gs could be responsible for maintaining 

the relaxation of uterus during pregnancy (Europe-Finner et al., 1993).  Although the role of 

Gαi2 in myometrium has been thoroughly studied, the presence or the role of Gαi2 elsewhere 

in the human reproductive tract remains unclear. 
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Immunohistochemical studies in the rat have shown that Gαi2 is specifically localized in 

tissues having motile cilia with a characteristic 9+2 ultrastructure. Such a specific localization 

in rat oviductal, tracheal and brain ependymal cilia (Shinohara et al., 1998) implies that Gαi2 

may well serve a physiological function distinct from those of the other Gα subunits. It is 

probable that Gαi2 might play a cilia-specific physiological role. Interestingly, proteomic 

analysis has revealed Gαi2 as a resident axonemal protein of the human bronchial cilia 

(Ostrowski et al., 2002). To date, however, there are no reports providing evidence of the 

localization of Gαi2 in any other human ciliated tissues, such as fallopian tubes. In this study, 

we identify the presence and localization of Gαi2 in tissues which are primarily in contact 

with gametes, and provide environment for fertilization, early development of the embryo as 

well as implantation, i.e., the human fallopian tube and endometrium. We have also evaluated 

the potential changes in Gαi2 expression in human endometrium during the menstrual cycle to 

reveal any potential hormonal regulation of this G protein subunit in humans. 
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Materials and methods 100 
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Endometrial tissue collection and preparation for immunohistochemistery 

The current study was approved by the Local Ethics Committee and informed written consent 

was obtained prior to the collection of tissue samples. For immunohistochemical 

investigations, tissue samples were obtained from 6 fertile women, and for genomic studies, 

endometrial biopsies were obtained from 21 fertile women. All the women taking part in the 

investigation had regular cycles, showed no evidence of any pathological uterine disorder, and 

had not used oral contraception or an intrauterine device during the previous three months. 

Biopsies were obtained in the operating theatre between 2 and 29 days after the last menstrual 

period (LMP). The mean age of the women taking part in the study was 35 (range 24-40) 

years, and each had had at least one previous successful pregnancy.  

 

Endometrial biopsies for immunohistochemistry were immediately snap-frozen and stored in 

liquid nitrogen until processed. Cryosections were cut at 5 µm and stored at -70°C until use. 

For genomic studies, endometrial biopsies were immediately placed in RNAlater (Ambion, 

Huntingdon, U.K.), followed by immersion in liquid nitrogen until processed.      

 

Fallopian tube tissue collection and preparation for immunohistochemistry  

Human fallopian tube tissues were collected from 9 patients undergoing total abdominal 

hysterectomy for benign gynaecological conditions. The mean age of the women taking part 

in the study was 42 (range 33-56) years.  

 

Fallopian tube tissue samples for immunohistochemistry were immediately fixed in 10% 

formalin overnight and embedded in paraffin. Paraffin sections were cut at 5 µm. For genomic 
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studies, fallopian tube tissue samples were immediately placed in RNAlater (Ambion), and 

stored for 24 hours at 4°C followed by immersion and storage in liquid nitrogen until 

processed.  
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Cell culture 

Fallopian tube tissue samples for primary epithelial cell cultures were obtained as follows: 

fallopian tubes were placed in Hank’s solution immediately after collection, cut open 

longitudinally and incubated 1 h with 0.25 % collagenase (at 37°C, 95% O2, 5% CO2). The 

cells were scraped gently using a sterile blade, washed with red blood cell lysing buffer 

(Sigma-Aldrich) and then 2-3 times with culture media (DMEM-F12). The cells were plated 

into 75 ml flasks. Fallopian tube primary epithelial cells were cultured at +37°C in DMEM 

(F12) culture media (Invitrogen, Paisley, UK) supplemented with 1% penicillin and 

streptomycin (Sigma-Aldrich), 10% fetal calf serum (Invitrogen) and L-glutamine (Invitrogen) 

in 5% CO2 atmosphere. 

 

RNA isolation and cDNA synthesis 

Tissues were removed from RNAlater and homogenised in 3 ml of TRIreagent (Sigma-

Aldrich) using an Ultra-Turrax homogenizer for 2 min. Total RNA from the tissues and 

pelleted cells stored in TRIreagent was extracted following standard protocol supplied by the 

manufacturer.  Total RNA was treated with Dnase I (DNA-freeTM, Ambion) to remove 

genomic DNA contamination from the samples. First strand cDNA synthesis was performed 

using oligo dT primers (Metabion, Martinsried, Germany) and reverse transcription by 

SuperScript II (200 U/µl, Invitrogen, Paisley, UK). Negative controls were prepared without 

the enzyme (non-reverse transcribed controls, RT controls).  
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PCR was performed with the constructed cDNAs, Platinum Blue PCR Super Mix (Invitrogen) 

and primers from Metabion. We used the following primer pairs: β-actin forward 5’-TGA 

CCC AGA TCA TGT TTG AGA CC-3’ and β-actin reverse 5’-GGA GGA GCA ATG ATC 

TTG ATC TTC-3’, Gαi2 forward 5’-CTT GTC TGA GAT GCT GGT AAT GG-3’ and Gαi2 

reverse 5’-CTC CCT GTA AAC ATT TGG ACT TG-3’. The amplification was run for 35 

cycles under the following conditions: 95° 30 sec, 58° or 65° 30 sec, 72° 30 sec. Amplified 

sequences were 643 and 212 base pairs for Gαi2 and β-actin respectively. Annealing 

temperatures of 58° (β-actin) and 65° (Gαi2) were used. All experiments included RT controls 

as well as negative controls (no cDNA). PCR products were separated on 1.2 % agarose gel. 

 

Quantitative real time PCR 

Quantitative real time PCR was performed with the constructed cDNAs and the same primers 

that were used in PCR reactions. SYBR Green Jump Start (Sigma-Aldrich) master mix 

(containing 10µl SYBR Green, 7µl Water, 1µl of each primer and 1µl cDNA) was added to 

each well of PCR plate and amplification was performed under the following conditions: 50 

cycles (95° 30 sec, 58° or 65° 30 sec, 72° 30 sec). All experiments included RT controls and 

negative controls (no cDNA).  

 

Results were analyzed using iCycler (Biorad laboratories Ltd, Hemel Hempstead, UK). To 

compare relative quantities of Gαi2 expression during the menstrual cycle, endometrial 

biopsies were divided into three groups; menstrual (LMP + 1-4 ; n = 3; LMP +1, +4 and +4), 

proliferative (LMP + 5-14 ; n = 9; early proliferative LMP +5, +5 and +7, mid-proliferative 

LMP +8, +9 and +10, late proliferative LMP +11, +12 and +13) and secretory (LMP + 15-29 ; 

n = 9; early secretory LMP +16, +16 and +17, mid-secretory LMP +20, +21 and +22, late 
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secretory LMP +26, +28 and +29). Relative Gαi2 expression quantities were compared 

between these groups. The threshold cycle values were normalised against threshold value of 

human β-actin. The results were expressed as mean ± S.E.M. Statistical analysis was 

performed by using one-way ANOVA with Tukey’s multiple comparison test.  
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p < 0.05 was considered significant. 

 

Immunohistochemistry 

Cryosections of endometrium were thawed by immersion (15 min at 20 ºC) into fixative 

containing 4 % paraformaldehyde (Sigma-Aldrich, Poole, UK) in 0.1 M PBS, pH 7.4. The 

slides were then washed with PBS (2x5 min), and further fixed by immersion in -20°C 

methanol (4 min) followed immediately by treatment with -20°C acetone (2 min). After 2x5 

min washes with PBS, endogenous peroxidase activity was blocked by 5% H2O2 (in distilled 

water) treatment (5 min). The slides were then washed with deionized water (2x5 min) and 

PBS (2x5 min). After this, the protocol follows the same blocking and staining protocol as 

described for paraffin sections. 

 

Fallopian tube paraffin sections were firstly dewaxed in xylene, rehydrated through a series of 

ethanols and finally washed with PBS. Endogenous peroxidase activity was quenched by a 20 

min incubation with 3% H2O2 (v/v) in methanol. Antigen retrieval was performed by 

microwave irradiation in 10mM citrate buffer, pH 6.0 (12 min). The slides were allowed to 

cool in the buffer and then washed with PBS (2x3 min).  

 

Vectastain Elite ABC Kit (Vector Laboratories, Peterborough, UK) was used according to the 

manufacturers instructions for both cryosections and paraffin sections, with the following 

modifications. Slides were blocked in blocking buffer containing 250 µl avidin D / ml (1 h 
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RT). Mouse anti-Giα-2 monoclonal antibody, MAB3077 (Chemicon International, Temecula, 

CA) was diluted into Dako antibody diluent (Dako UK Ltd, Cambridgeshire, UK) containing 

250 µl biotin / ml, and incubated overnight at 4 ºC (cryosections 1:1000, paraffin sections 

1:500). Primary antibody was omitted in negative controls. The slides were washed with PBS 

(5 min), and incubated with secondary antibody (1:200 Biotinylated anti-mouse (Vector 

Laboratories)) for 30 min at 20 ºC. The slides were washed as before and incubated for 30 

min with Vectastain ABC reagent (Vector Laboratories). After washing, binding was 

visualized by incubation with substrate DAB or DAB-Ni for 8 min (Vector Laboratories). The 

slides were rinsed with tap water (5 min) and PBS (3 min) and counterstained by using 10% 

haematoxylin (10 min). Following thorough rinse in tap water, slides were dehydrated 

through a series of ethanols, cleared in xylene and coverslipped with DePex mounting 

medium (VWR International, Lutterworth, UK).  
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The endometrial biopsy specimens were timed according to LMP and morphology and 

divided into three groups, menstrual, proliferative or secretory. The slides were imaged using 

a x40 objective on an Olympus CKX41 microscope. Digital images were captured with a 

Nikon Coolpix 5400 camera and identically edited in Adobe Photoshop (Adobe Systems, 

Mountain View, CA). 
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Results 219 
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PCR reveals the expression of Gαi2 gene in human reproductive tissues. 

We used human fallopian tube tissue and human endometrial biopsies to study the expression 

of Gαi2 by PCR. Our data revealed that Gαi2 is expressed in human fallopian tube and human 

endometrium (Figure 1 A, B). Our studies also confirmed that Gαi2 is expressed in primary 

cultures of fallopian tube epithelial cells (Figure 1 C). Control experiments with non-reverse 

transcribed RNA of each sample confirmed that there was no contamination of human DNA 

in the samples.  

 

Immunohistochemistry shows specific localization of Gαi2 protein in fallopian tube cilia and 

enrichment in endometrial glands. 

Immunostaining on human fallopian tube paraffin sections showed specific localization of 

Gαi2 protein in fallopian tube epithelial cells and the cilia (Figure 2 C). Positive staining was 

also seen in the cytoplasm of epithelial cells, surrounding the nuclei. In endometrial tissue, 

Gαi2 staining was enriched in endometrial glands, but was present also in stroma (Figure 2 A, 

B).  

 

Quantitative real time PCR shows alterations in Gαi2 gene expression during the menstrual 

cycle. 

We carried out quantitative real time PCR experiment on endometrial biopsies spanning the 

menstrual cycle (Figure 3). Based on the phase of the menstrual cycle of each patient, the 

biopsies were designated in three groups, namely menstrual (LMP + 1-4), proliferative (LMP 

+ 5-14) and secretory (LMP + 15-29).  
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Our results demonstrated that endometrial expression of Gαi2 gene changed during the cycle. 

The expression reached its peak in secretory phase. The expression of Gαi2 gene in secretory 

phase was significantly higher (p < 0.05) compared to that of the other phases.   
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Discussion 268 
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The present study demonstrates the existence and localization of Gαi2 in human endometrium 

and fallopian tube. Our data establishes the specific localization of Gαi2 in the fallopian tube 

epithelial cells, particularly in the cilia of fallopian tube epithelial cells. In human 

endometrium, we have demonstrated that localization of Gαi2 is enriched in endometrial 

glands. We have also shown that Gαi2 expression in human endometrium changes 

significantly during the menstrual cycle with maximum expression in the secretory phase, 

providing evidence that expression of this Gi subunit might be under hormonal regulation in 

the female reproductive tract in vivo.  

 

The presence of G protein subunit Gαi2 in rat myometrial membranes was first reported by 

Milligan et al. (1989) and the finding was later supported by a study suggesting differential 

regulation of Gαi2 and Gαi3 in rat myometrium during gestation (Tanfin et al., 1991). In 

human myometrium, the levels of G protein subunits Gαi1, Gαi3, Gαq and Gα11 have been 

shown to remain constant in pregnant and non-pregnant women, while levels of Gαi2 decrease 

during pregnancy. The simultaneous, substantial increase in myometrial Gs suggested that the 

balance between Gαi2 and Gs might be essential in regulating relaxation of the uterus during 

pregnancy (Europe-Finner et al., 1993). Besides this, Gi family proteins have been suggested 

to be functionally linked to α2 adrenergic signalling in human myometrium during pregnancy 

(Breuiller et al., 1990). Later studies in the rat have confirmed the involvement of Gαi2 and 

Gαi3 in α2/β2 adrenergic signalling in the maintenance of uterus relaxation during rat 

pregnancy (Mhaouty et al., 1995).  
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Unlike the thoroughly studied myometrium, the presence and role of Gαi2 in other regions of 

the reproductive tract has remained largely obscure. Although the presence of Gi family 

proteins have been described in human endometrium during artificial cycles of hormone 

replacement therapy, those studies rely solely on data from immunoblotting, using an 

antibody unable to discriminate between the closely related Gαi1 and Gαi2 (Bernardini et al., 

1995, 1999). Therefore, prior to our study, cyclical changes in Gαi2 expression have not been 

reported in humans. Quantitative PCR showed that Gαi2 expression in human endometrium in 

vivo significantly increased towards secretory phase of the menstrual cycle. This suggested 

that sex hormones, like oestrogen or progesterone, might regulate the expression of this Gi 

subunit in human endometrium. Furthermore, immunostaining clearly demonstrated the main 

localization of Gαi2 in endometrial glands and partially in endometrial stroma.  
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It is likely that Gαi2 is hormonally regulated in the human endometrium. Earlier studies on rat 

myometrium have shown that estradiol administration during rat pregnancy increases the 

levels of both Gαi2 and Gαi2 mRNA, while progesterone has no effect on Gαi2 expression. 

Instead, progesterone was reported to cause a decrease in Gαq subunit expression (Cohen-

Tannoudji et al., 1995). Other studies in pregnant rat myometrium have suggested a 

regulatory role for progesterone in control of β2 receptors (Maltier et al., 1989) and Gs 

proteins (Elwardy-Merezak et al., 1994), as well as in upregulation β2 receptor expression 

(Vivat et al., 1992). Apart from the studies by Bernardini et al. (1995; 1999) the potential role 

for sex hormones in regulation of G proteins in the human has remained largely unexplored.  

 

In the present study, we have reported for the first time the localization of Gαi2 in fallopian 

tube epithelial cilia. In fallopian tubes, ciliary beat is essential for gamete transport in 

association with the tubal secretory flow and muscle contractility. Furthermore, fallopian 
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tubes have been proposed to act as sperm reservoirs, where the ciliated epithelial cells interact 

with sperm (Baillie et al., 1997; Pacey et al., 1995a; Pacey et al., 1995b; Reeve et al., 2003). 

Fallopian tube epithelial cells have also been demonstrated to preserve the viability of sperm 

(Kervancioglu et al., 1994; Kervancioglu et al., 2000; Murray and Smith, 1997). Given the 

fact that Gαi2 is specifically localized in rat tissue motile cilia with a characteristic 9+2 

ultrastructure, namely in rat oviductal, tracheal and brain ependymal cilia (Shinohara et al., 

1998), it seems evident that this Gi subunit might have a cilia-specific physiological role. 

Apart from proteomic analysis providing evidence of Gαi2 as a resident axonemal protein of 

the human bronchial cilia (Ostrowski et al., 2002), there are no reports describing Gαi2 in any 

other human ciliated tissue. In addition to positive immunostaining of fallopian tube cilia, we 

reported here positive immunostaining surrounding the nuclei. This presumably represents 

pre-stage Gαi2 which is still in synthesis, or alternatively, Gαi2 which is ready for transport 

into cilia by intraflagellar transport mechanisms. This intracellular machinery is vital for 

assembly and maintenance of the cilia, as it transports essential particles, such as proteins 

synthesised in the cytoplasm of cell, into the cilia, and returns the turnover products to the 

cytoplasm of cell (Rosenbaum and Witman, 2002). 

317 

318 

319 

320 

321 

322 

323 

324 

325 

326 

327 

328 

329 

330 

331 

332 

333 

334 

335 

336 

337 

338 

339 

340 

341 

 

Studies with Gαi2-knockout mice have established a crucial regulatory role for the Gαi2 

subunit in immunological processes (Dalwadi et al., 2003; Fan et al., 2005; Han et al., 2005; 

Jiang et al., 1997; Rudolph et al., 1995; Rudolph et al., 1995; Zhang et al., 2005). Gαi2 has 

been revealed to control regulation of T-cell proliferation (Zhang et al., 2005) and B cell 

development (Dalwadi et al., 2003). Furthermore, Gαi2 has been suggested to mediate 

chemokine signalling (Han et al., 2005). However, reports of Gαi2-knockout studies have not 

provided any information on potential involvement of this Gi subunit in modulation of mice 

fertility. Interestingly, a recent study on Gαi2-knockout mice showed Gαi2 to differentially 
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regulate inflammatory mediator production in response to microbial stimuli and proposed a 

TLR-signalling regulating, anti-inflammatory role for Gαi2 by an yet unknown mechanism 

(Fan et al., 2005). Regarding the potential link between TLR-signalling and Gαi2 in female 

reproductive tract, it is noteworthy that our previous studies showing the localization pattern 

of several TLRs (Fazeli et al., 2005) showed a similar pattern of localisation compared to that 

we now report for Gαi2. Future studies should be directed towards understanding whether 

Gαi2 might share signalling pathways with TLRs, and potentially have a TLR-signalling 

regulating role in human reproductive tract.   
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In conclusion, our studies reveal the presence of Gαi2 in human endometrium and fallopian 

tube epithelium, especially the cilia of fallopian tube epithelial cells. To the best of our 

knowledge, this is the first report of the localization of Gαi2 in ciliated reproductive tissue in 

the human. We also report here, for the first time, the alterations in Gαi2 expression during 

human menstrual cycle. Our data implies this Gi family subunit might be under hormonal 

regulation in the female reproductive tract in vivo. Further studies are required to clarify the 

physiological role of Gαi2 in the female reproductive tract.  
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Figure 1. PCR showed Gαi2 expression in fallopian tube tissue (A), human endometrium 

tissue (B) and fallopian tube primary epithelial cells (C). PCR products were separated on 1.2 

% agarose gel. 1: β-actin (643 base pairs), 2: β actin RT control, 3: Gαi2 (212 base pairs), 4: 

Gαi2 RT control, MW: molecular weight (base pairs).  

 

Figure 2. Immunostaining showing localization of Gαi2 in human endometrial cryosections 

and fallopian tube paraffin embedded sections. Gαi2 is enriched in endometrial glands, 

proliferative phase (A), secretory phase (B). Immunostaining of human fallopian tube paraffin 

embedded sections (C) indicated specific localization of Gαi2 in fallopian tube epithelial cells 

and the cilia. Gαi2 (brown). Negative control slides were incubated with diluent only. All the 

slides were counterstained with haematoxylin (blue). Scale bar: 100 µm (A, B), 40 µm (C). 

 

Figure 3. Quantitative real time PCR uncovered variable expression of Gαi2 gene in 

endometrium during the menstrual cycle. Endometrial biopsies were designated in three 

groups according to menstrual history of the patient (menstrual n=3, proliferative and 

secretory n=9). The figure illustrates mean ± SEM of normalised Gαi2 gene expression. * 

Secretory phase was significantly different from the other phases, p < 0.05; One-way 

ANOVA with Tukey’s multiple comparison test. 
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Figure 1. PCR showed Gαi2 expression in fallopian tube tissue (A), human endometrium 

tissue (B), immortalized fallopian tube epithelial cell line (OE-E6/E7) (C) and fallopian tube 

primary epithelial cells (D). PCR products were separated on 1.2 % agarose gel. 1: β-actin 

(643 base pairs), 2: β actin RT control, 3: Gαi2 (212 base pairs), 4: Gαi2 RT control, MW: 

molecular weight (base pairs).  
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Figure 2. Immunostaining shows localization of Gαi2 in human endometrial cryosections and 

fallopian tube paraffin embedded sections. Gαi2 is enriched in endometrial glands, 

proliferative phase (A), secretory phase (B). Immunostaining of human fallopian tube paraffin 

embedded sections (C) indicated specific localization of Gαi2 in epithelial cells and the cilia.  

Gαi2 (brown): Chemicon MAB3077 primary antibody was used with dilutions of 1:1000 for 

endometrial cryosections and 1:500 for paraffin embedded fallopian tube sections. DAB or 

DAB-Ni was used as a chromogen (endometrial cryosections and paraffin embedded fallopian 

tube sections, respectively). Negative control slides were incubated with diluent only. All the 

slides were counterstained with haematoxylin (blue). Scale bar: 100 µm. 

 

Figure 3. Western blot analysis confirmed the presence of Gαi2 in immortalized fallopian 

tube epithelial cell line (OE-E6/E7). A: G protein standard, (2 μl / lane) Bovine brain 

immunoblot stardard, Calbiochem. B: Homogenate of fallopian tube epithelial cells, (60 μg / 

lane). 

 

Figure 4. Quantitative real time PCR uncovered variable expression of Gαi2 in endometrium 

during the menstrual cycle. Endometrial biopsies were designated in three groups according 

to menstrual history of the patient (menstrual n=3, proliferative and secretory n=9). The figure 

illustrates mean ± SEM of normalised Gαi2 gene expression. * Secretory  phase was 
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significantly different from the other phases, p < 0.05; One-way ANOVA with Tukey’s 

multiple comparison test. 
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Figure 1. KS Mönkkönen et al. 
 



Confidential 25

 647 
648 

691 
692 
693 
694 
695 
696 

 
 649 

650 
651 
652 
653 
654 
655 
656 
657 
658 
659 
660 
661 
662 
663 
664 
665 
666 
667 
668 
669 
670 
671 
672 
673 
674 
675 
676 
677 
678 
679 
680 
681 
682 
683 
684 
685 
686 
687 
688 
689 
690 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 2. KS Mönkkönen et al. 
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