4,062 research outputs found

    A Bayesian Climate Change Detection and Attribution Assessment

    Get PDF

    Development of physical and mathematical models for the Porous Ceramic Tube Plant Nutrification System (PCTPNS)

    Get PDF
    A physical model of the Porous Ceramic Tube Plant Nutrification System (PCTPNS) was developed through microscopic observations of the tube surface under various operational conditions. In addition, a mathematical model of this system was developed which incorporated the effects of the applied suction pressure, surface tension, and gravitational forces as well as the porosity and physical dimensions of the tubes. The flow of liquid through the PCTPNS was thus characterized for non-biological situations. One of the key factors in the verification of these models is the accurate and rapid measurement of the 'wetness' or holding capacity of the ceramic tubes. This study evaluated a thermistor based moisture sensor device and recommendations for future research on alternative sensing devices are proposed. In addition, extensions of the physical and mathematical models to include the effects of plant physiology and growth are also discussed for future research

    The application of ultrasonic NDT techniques in tribology

    Get PDF
    The use of ultrasonic reflection is emerging as a technique for studying tribological contacts. Ultrasonic waves can be transmitted non-destructively through machine components and their behaviour at an interface describes the characteristics of that contact. This paper is a review of the current state of understanding of the mechanisms of ultrasonic reflection at interfaces, and how this has been used to investigate the processes of dry rough surface contact and lubricated contact. The review extends to cover how ultrasound has been used to study the tribological function of certain engineering machine elements

    Energetics and atomic mechanisms of dislocation nucleation in strained epitaxial layers

    Get PDF
    We study numerically the energetics and atomic mechanisms of misfit dislocation nucleation and stress relaxation in a two-dimensional atomistic model of strained epitaxial layers on a substrate with lattice misfit. Relaxation processes from coherent to incoherent states for different transition paths are studied using interatomic potentials of Lennard-Jones type and a systematic saddle point and transition path search method. The method is based on a combination of repulsive potential minimization and the Nudged Elastic Band method. For a final state with a single misfit dislocation, the minimum energy path and the corresponding activation barrier are obtained for different misfits and interatomic potentials. We find that the energy barrier decreases strongly with misfit. In contrast to continuous elastic theory, a strong tensile-compressive asymmetry is observed. This asymmetry can be understood as manifestation of asymmetry between repulsive and attractive branches of pair potential and it is found to depend sensitively on the form of the potential.Comment: 11 pages, 9 figures, to appear in Phys. Rev.

    Present status and future prospects for a Higgs boson discovery at the Tevatron and LHC

    Full text link
    Discovering the Higgs boson is one of the primary goals of both the Tevatron and the Large Hadron Collider (LHC). The present status of the Higgs search is reviewed and future prospects for discovery at the Tevatron and LHC are considered. This talk focuses primarily on the Higgs boson of the Standard Model and its minimal supersymmetric extension. Theoretical expectations for the Higgs boson and its phenomenological consequences are reviewed.Comment: 13 pages, 9 figures, 2 tables, jpconf documentclass file, invited talk at PASCOS 2010, the 16th International Symposium on Particles, Strings and Cosmology, Valencia, Spain, 19--23 July 201

    Boojums and the Shapes of Domains in Monolayer Films

    Full text link
    Domains in Langmuir monolayers support a texture that is the two-dimensional version of the feature known as a boojum. Such a texture has a quantifiable effect on the shape of the domain with which it is associated. The most noticeable consequence is a cusp-like feature on the domain boundary. We report the results of an experimental and theoretical investigation of the shape of a domain in a Langmuir monolayer. A further aspect of the investigation is the study of the shape of a ``bubble'' of gas-like phase in such a monolayer. This structure supports a texture having the form of an inverse boojum. The distortion of a bubble resulting from this texture is also studied. The correspondence between theory and experiment, while not perfect, indicates that a qualitative understanding of the relationship between textures and domain shapes has been achieved.Comment: replaced with published version, 10 pages, 13 figures include

    Micro-Electro-Mechanical-Systems (MEMS) and Fluid Flows

    Get PDF
    The micromachining technology that emerged in the late 1980s can provide micron-sized sensors and actuators. These micro transducers are able to be integrated with signal conditioning and processing circuitry to form micro-electro-mechanical-systems (MEMS) that can perform real-time distributed control. This capability opens up a new territory for flow control research. On the other hand, surface effects dominate the fluid flowing through these miniature mechanical devices because of the large surface-to-volume ratio in micron-scale configurations. We need to reexamine the surface forces in the momentum equation. Owing to their smallness, gas flows experience large Knudsen numbers, and therefore boundary conditions need to be modified. Besides being an enabling technology, MEMS also provide many challenges for fundamental flow-science research

    Decreased MCM2-6 in Drosophila S2 cells does not generate significant DNA damage or cause a marked increase in sensitivity to replication interference.

    Get PDF
    A reduction in the level of some MCM proteins in human cancer cells (MCM5 in U20S cells or MCM3 in Hela cells) causes a rapid increase in the level of DNA damage under normal conditions of cell proliferation and a loss of viability when the cells are subjected to replication interference. Here we show that Drosophila S2 cells do not appear to show the same degree of sensitivity to MCM2-6 reduction. Under normal cell growth conditions a reduction of >95% in the levels of MCM3, 5, and 6 causes no significant short term alteration in the parameters of DNA replication or increase in DNA damage. MCM depleted cells challenged with HU do show a decrease in the density of replication forks compared to cells with normal levels of MCM proteins, but this produces no consistent change in the levels of DNA damage observed. In contrast a comparable reduction of MCM7 levels has marked effects on viability, replication parameters and DNA damage in the absence of HU treatment

    Effect of fluorination of 2,1,3-benzothiadiazole

    No full text
    The 4,7-dithieno-2,1,3-benzothiadiazole (DTBT) moiety and its fluorinated counterpart are important π-conjugated building blocks in the field of organic electronics. Here we present a combined experimental and theoretical investigation into fundamental properties relating to these two molecular entities and discuss the potential impact on extended π-conjugated materials and their electronic properties. While the fluorinated derivative, in the solid state, packs with a cofacial overlap smaller than that of DTBT, we report experimental evidence of stronger optical absorption as well as stronger intra- and intermolecular contacts upon fluorination
    • …
    corecore