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ABSTRACT

A Bayesian analysis of the evidence for human-induced climate change in global surface temperature
observations is described. The analysis uses the standard optimal detection approach and explicitly incor-
porates prior knowledge about uncertainty and the influence of humans on the climate. This knowledge is
expressed through prior distributions that are noncommittal on the climate change question. Evidence for
detection and attribution is assessed probabilistically using clearly defined criteria. Detection requires that
there is high likelihood that a given climate-model-simulated response to historical changes in greenhouse
gas concentration and sulphate aerosol loading has been identified in observations. Attribution entails a
more complex process that involves both the elimination of other plausible explanations of change and an
assessment of the likelihood that the climate-model-simulated response to historical forcing changes is
correct. The Bayesian formalism used in this study deals with this latter aspect of attribution in a more
satisfactory way than the standard attribution consistency test. Very strong evidence is found to support the
detection of an anthropogenic influence on the climate of the twentieth century. However, the evidence
from the Bayesian attribution assessment is not as strong, possibly due to the limited length of the available
observational record or sources of external forcing on the climate system that have not been accounted for
in this study. It is estimated that strong evidence from a Bayesian attribution assessment using a relatively
stringent attribution criterion may be available by 2020.

1. Introduction

Statistical analysis plays a major role in climate
change detection and attribution studies. The method
widely used in such studies is known as “optimal fin-

gerprinting” and utilizes the generalized multiple re-
gression model

y � X� � �, �1�

where vector y contains a filtered version of the ob-
served temperature record, matrix X contains estimated
response patterns (signal patterns) to known forcings
on the climate system, and vector � contains natural
variability that is generated by internal climate pro-
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cesses. The filtering process that is applied to the ob-
servations typically results in an observed vector y with
only 10–20 elements. Each column in matrix X contains
the same number of elements as y, and a separate col-
umn is used for each of the external forcing factors that
is taken into account in the analysis. Vector � contains
one element for each signal taken into account. The
signal pattern estimates contained in the columns of X
are typically obtained by using a coupled climate sys-
tem model (see, e.g., Flato et al. 2000) to simulate the
response to known forcing changes in the twentieth
century. Vector � is assumed to be a realization of a
Gaussian random vector consisting of correlated ele-
ments.

The forcings that are most often accounted for in
optimal fingerprinting studies result from anthropo-
genic changes in greenhouse gas concentrations and
sulphate aerosol loadings. Some studies also account
for anthropogenic changes in the distribution of ozone,
and variability in natural external forcing factors such
as changes in the solar output and in the stratospheric
loading of aerosols from explosive volcanic eruptions.
Because climate models simulate natural internal vari-
ability as well as the response to specified changes in
external forcing, the response to forcing is typically es-
timated by averaging across an ensemble of simulations
of the twentieth century. These signal estimates, which
must be linearly independent, are inserted into the col-
umns of matrix X. The vector of parameters � accounts
for the possibility that the amplitudes of the climate
model responses to the specified external forcings may
not be correct by allowing us to scale the signal patterns
to best match the pattern of change that is contained in
the observations. A scaling factor different from unity
might also indicate that the observations have been af-
fected by one or more additional forcing factors not
included in the model that may have similar patterns of
response.

Detection and attribution questions are assessed
through a combination of deductive reasoning (to de-
termine whether there is evidence that other mecha-
nisms of change not included in the climate model
could plausibly explain the observed change) and by
testing specific hypotheses on �. Detailed accounts of
the optimal fingerprinting method are given by Hassel-
mann (1979, 1997), Allen and Tett (1999), and Allen et
al. (2004). See also the authoritative review of Mitchell
et al. (2001).

The detection of a postulated climate change signal
occurs when its amplitude in observations is shown to
be significantly different from zero. This is handled in
the standard optimal fingerprinting approach by testing
the null hypothesis

HD:� � 0,

where 0 is a vector of zeros. Rejection of HD by a
one-sided test of significance leads to detection at a
specified level of significance.

Attribution refers to the process of establishing a
cause and effect relationship between the observed
change and the hypothesized forcing agents. The re-
quirements for making an attribution claim (e.g., see
Mitchell et al. 2001) are detection, elimination of other
plausible causes, and evidence that the observed
change is consistent with the estimated response to ex-
ternal forcing; that is, � � 1 where 1 is a vector of units.
Classical “optimal fingerprinting” analysis uses a hy-
pothesis test called the attribution consistency test (Has-
selmann 1997; Allen and Tett 1999) to test the null
hypothesis

HA:� � 1.

Formally, consistency between the observed and cli-
mate-model-simulated response to forcing can be
claimed when HA cannot be rejected. While a failure to
reject HA does not constitute direct evidence for the
hypothesis, consistency does provide support for attri-
bution, particularly when the assessment of HA involves
the simultaneous testing of several externally forced
signals.

The Bayesian approach to assessing evidence (e.g.,
Hasselmann 1998; Leroy 1998; Berliner et al. 2000) pro-
vides an alternative to standard (frequentist) hypoth-
esis testing. The Bayesian approach as presented by
Berliner et al. (2000) consists of three main steps:

(i) “Optimal” (generalized linear) regression to esti-
mate the vector of amplitudes � that produce the
best fit between the climate model estimates of the
response to external forcing and the observed
data.

(ii) Identification of the posterior distribution of the
amplitudes. This is achieved by combining prior
knowledge about the amplitudes that has been ex-
pressed as a prior probability distribution with the
optimal estimates obtained in (i).

(iii) A detection and attribution assessment that is
done by examining the posterior probabilities for
appropriately defined detection and attribution
criteria.

The standard optimal fingerprinting analysis, in con-
trast, consists of step (i) followed by a step (iii�) in
which hypotheses HD and HA are tested. Differences in
the clarity of the inferences that can be made with these
two approaches will become apparent in the example
that will be described below.
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We will see that the choice of inference technique
does not affect the conclusion that there is strong evi-
dence that the warming observed during the latter half
of the twentieth century is unlikely to have been en-
tirely due to natural internal variability (Houghton et
al. 2001). Nevertheless, the Bayesian approach has the
advantages that it allows incorporation of prior knowl-
edge into the analysis and, more importantly, that it
provides direct probabilistic assessments of the evi-
dence for detection and attribution.

The particular Bayesian approach used in this paper
is a modified version of Berliner et al.’s (2000) method.
Our modifications include changes in the details of how
the observations are filtered, the use of a different cli-
mate model to estimate the signals of interest, the use
of a different approach for specifying the parameters of
the prior distribution on the signal amplitudes, and a
somewhat different approach to the assessment of the
results. We apply the method to the detection of an
anthropogenic signal in observed surface air and sea
temperatures, and through this application we highlight
issues associated with its implementation. The remain-
der of this paper is organized as follows. We describe
the observations and the Bayesian method with which
we study the climate change problem in section 2. Our
findings are presented in section 3. Discussion and con-
cluding remarks are given in section 4.

2. Data and methods

a. Data

Our study is set up in a manner similar to Zwiers and
Zhang (2003). The observational dataset used is the
HadCRUTv dataset (Jones et al. 2001), which is based
on monthly values of surface air and sea temperature
anomalies relative to 1961–90 and is presented on a 5°
latitude by 5° longitude grid.

We use only one externally forced climate signal in
this study—that being the combined response to his-
torical changes in greenhouse gas concentrations and
the direct effect of sulphate aerosol loading. Following
standard convention, we will refer to this signal as the
“GS” signal. Our estimates of the GS signal, and of
natural climate variability, are constructed from two
versions of a coupled global climate model. The models
used are the Canadian Center for Climate Modelling
and Analysis (CCCma) CGCM1 (Flato et al. 2000;
Boer et al. 2000) and CGCM2 (Flato and Boer 2001).
Details of the models and an extensive archive of model
output are available from the CCCma Web site (http://
www.cccma.ec.gc.ca). Ensembles of three GS simula-
tions are available from each model, for a total com-
bined ensemble of six GS simulations. The GS signal is

estimated by averaging across this six-member en-
semble.

b. Analysis strategy

The data and climate model output that we use are
preprocessed to restrict the analysis to large spatial
scales and to filter as much natural internal variability
as possible from the GS signal estimate. Thus our analy-
sis is conducted on decadal averages of observed an-
nual-mean temperature anomalies relative to the clima-
tology for the twentieth century, calculated from non-
missing years in the observed data. These decadal
anomalies are aggregated into 30° latitude by 40° lon-
gitude grid boxes for both observations and climate
model output.

Separate analyses are performed for each of six over-
lapping five-decade periods (1900–49, 1910–59, 1920–
69, 1930–79, 1940–89, and 1950–99). To avoid system-
atic bias, missing data are not filled in. Model output is
flagged as missing whenever the corresponding obser-
vations are missing so that the length of the y vector is
the same as the row dimension of the X matrix. Ob-
served annual means are treated as missing even if one
month within the year is missing. Decadal means are
treated as missing if fewer than 6 of the 10 years are
present. In the absence of any missing data, the obser-
vational vector y would have length 5 � 6 � 9 � 270 for
any one five-decade period, where 6 � 9 � 54 is the
number of 30° latitude by 40° longitude grid boxes that
cover the globe. Missing data reduces the dimension
length to a number ranging from 220 for the period
1900–49 to 253 for the period 1950–1999.

c. Introduction to Bayesian aspects

Before we proceed with our analysis, readers not fa-
miliar with Bayesian statistics may need some clarifica-
tions on steps (ii) and (iii). We should begin by noting
that the Bayesian aspect of our analysis begins with the
reduced information that is obtained from the optimal
regression analysis. That is, we use Bayesian tools to
make inferences about � beginning with the estimate
�̂ that was obtained by means of optimal regression. A
more complete analysis would include the regression
step within the Bayesian framework, and perhaps even
the signal matrix X. However, this would significantly
complicate the application of the Bayesian paradigm
(see, e.g., the discussion in Berliner et al. 2000).

Bayesian inferences are based on the posterior distri-
bution, which in our case is the conditional distribution
of � given the estimated value �̂ from the “optimal”
regression in step (i). To see how such a distribution is
obtained, let �(�) be the density function of the prior
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distribution of � that expresses our prior knowledge
about the true value of the amplitude vector before
observing y and estimating �̂. After observing y and
estimating �̂, our knowledge of � is updated by calcu-
lating the posterior distribution of � conditional upon
�̂, which is denoted �(�/�̂). By Bayes theorem, the
posterior distribution is given by

��� | �̂� �
f��̂, ��

f��̂�
�

f��̂ |������

� f��̂ |������ d�

, �2�

where f(�̂ |�) is the conditional density of �̂ given the
true amplitude �.

The posterior distribution contains all of the avail-
able information about � and thus any statistical infer-
ences concerning � should be drawn from this distribu-
tion. Similar to Berliner et al. (2000), our detection
criterion requires that � have a large posterior prob-
ability of lying outside a predefined neighborhood of 0.
Because the external signals can be defined so that
positive values of � would be expected when the signals
are present in the observations, our “neighborhood” of
0 includes all negative amplitudes. Thus in our one sig-
nal case, the detection region simply reduces to an
open-ended interval on the positive � axis. Similarly, in
the multisignal case, the resulting multidimensional de-
tection region is a positive quadrant of the � plane. Our
criterion for assessing whether there is evidence to sup-
port attribution requires that � have large posterior
probability of lying in a predefined neighborhood of 1.
This neighborhood is referred to as the attribution re-
gion. In both cases, the posterior probabilities are cal-
culated by integrating the posterior distribution [Eq.
(2)] over these predefined regions.

The following subsections provide the details of our
analysis procedure.

d. Optimal detection procedure

To perform the “optimal” regression, we imple-
mented the method outlined by Allen and Tett (1999).
Thus the estimated scaling factor obtained from the
generalized linear regression is

�̂ � �XTĈN
	1X�	1XTĈN

	1y � FTy, �3�

where ĈN is an estimate of the covariance matrix of �.
To ensure the variance of �̂ is not negatively biased
because of possible overfitting (Hegerl et al. 1997), the
variance of �̂ is estimated by

�̂2 � FTC̃NF, �4�

where C̃N is a second, statistically independent estimate
of the covariance matrix of �.

The covariance matrices must be estimated from con-
trol simulation output from climate models because the
available instrumental record does not contain suffi-
cient information to do this reliably. Thus as in Zwiers
and Zhang (2003), our covariance matrices are esti-
mated from 1600 years of control simulation, composed
of 600 years from CGCM1 and 1000 years from
CGCM2. The 1600 years of control output is parti-
tioned into two 800-yr subsets consisting of the first
300 years from CGCM1 and the first 500 years from
CGCM2 in one case, and the last 300-yr and 500-yr
segments in the other.

Covariance matrix C̃N is estimated from the 72 over-
lapping five-decade control run chunks contained in the
first control subset. Note that the chunks do not span
the boundary between the 300-yr CGCM1 and 500-yr
CGCM2 segments. Each 50-yr chunk is processed in
the same manner as the observations to obtain a se-
quence of five decadal means that are then masked as
the observations and aggregated into 30° � 40° grid
boxes. The covariance matrix is then estimated from
these processed sequences of control run output. Note
that this estimation process is repeated for each of the
five-decade analysis periods because the details of the
masking, which reflect observational coverage, change
from one period to the next. Matrix C̃N is estimated
similarly from the second subset of control run output.

A difficulty encountered in all detection studies using
the optimal fingerprinting technique is that, even with
the use of long control simulations, the covariance ma-
trices C̃N and C̃N are not invertible. This occurs because
the dimension of y remains large relative to the length
of the available control simulations even after prepro-
cessing into decadal and 30° � 40° box means. The
exact dimension of y varies with the particular five-
decade period being analyzed, but it is always larger
than the number of overlapping five-decade sequences
(72) that are available in each of the control simulation
subsets. Consequently, the regression is performed in
the space spanned by the k leading EOFs of C̃N. A
residual consistency test (Allen and Tett 1999) is per-
formed to determine the appropriate truncation level k.
A simple schematic that outlines the optimal finger-
printing approach can be found in Weaver and Zwiers
(2000).

Once the “optimal” regression has been performed
and �̂ computed, we can proceed with steps (ii) and
(iii). This requires the selection of a prior distribution
for � and the calculation of the resulting posterior dis-
tribution.
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e. The prior distribution

An important element of the analysis is the choice of
prior distribution. This distribution embodies our prior
knowledge about the magnitude of the response to the
external forcing of the climate system that is being in-
vestigated. This knowledge can be either subjective or
objective in nature. An example of subjective knowl-
edge that could be incorporated into the prior is a judg-
ment about whether the climate has the potential to be
affected by anthropogenic forcing. Such a judgment,
which might be based on theoretical considerations,
should be independent of observations gathered during
the period that is represented by y. An example of how
objective knowledge could be incorporated into the
prior is that the width of the prior distribution could be
chosen to reflect uncertainty in the amplitude of the
response of climate models to known external forcings.
Such an estimate of uncertainty might be obtained by
performing “cross model” studies in which we attempt
to detect a signal estimated with one climate model in
the output of several other models (e.g., Hegerl et al.
2000). The width of the prior might also reflect uncer-
tainty in the pattern of response, in the sense that a
biased (but not totally orthogonal) response pattern
may require a scaling factor different from unity to
make the best fit with observations. In addition, the
width of the prior could be augmented to reflect uncer-
tainty in the forcing itself. Some considerations based
on energy balance model (EBM) experiments that in-
formed our specific choices of prior distributions are
discussed below.

More generally, uncertainty can be modeled explic-
itly in the Bayesian framework by building hierarchical
models in which uncertainty in the forcing and signal
response patterns is explicitly taken into account. Al-
ternatively, one could perform a robust Bayesian analy-
sis in which the prior distribution is varied systemati-
cally over a range of possibilities that reflects the un-
certainty of prior knowledge more completely than a
single distribution (Berliner et al. 2000). However, we
considered such approaches to be beyond the scope of
this paper.

To make the above more concrete, we use an EBM
to explore how climate model and forcing uncertainty
might translate into uncertainty on �. To determine the
uncertainty range, we have employed a suite of EBM
simulations that reflect an estimate of climate model
and forcing uncertainty. EBM simulations reproduce
many of the large-scale temperature responses of gen-
eral circulation models (e.g., Crowley et al. 1991).
EBMs do not simulate internal climate variability (un-
less forced with noise) and thus they produce climate

change signal estimates that are not affected by internal
climate variability. Here we employ a linear two-
dimensional (i.e., realistic land–sea distribution) sea-
sonal model that has been used in comparisons to pa-
leoclimate reconstructions (Crowley et al. 2003; Hegerl
et al. 2003).

Parameters such as the climate sensitivity and ocean
heat uptake must be set explicitly in EBMs. To reflect
the range of climate model uncertainty and the most
important forcing uncertainty, three parameters in the
EBM simulations are varied:

• The climate sensitivity, which represents the equilib-
rium response to CO2 doubling, was varied in 0.5°C
increments from 1.5° to 4.5°C. This reflects the range
presently covered by most coupled climate models as
reported by Houghton et al. (2001).

• The diffusivity, which determines the ocean heat up-
take in the EBM, was set to values between 0.95 and
2.5 cm2 s	1, yielding a conservative range embracing
an observational estimate from tracer studies of 1.7 

0.2 cm2 s	1 (Li et al. 1984).

• Since EBMs cannot distinguish between direct and
indirect tropospheric aerosol forcing, we also em-
ployed direct aerosol forcing starting in 1850 that
reaches values between 0.5 and 4.0 W m	2 by 2000 in
increments of 0.5 W m	2 for the latitude strip of 30°–
90°N. The forcing in other latitude bands was tapered
to lower values in successive equal-area strips so as to
yield a total global aerosol forcing of approximately
0.3 to 2.5 W m	2. This approximately covers the
Houghton et al. (2001) range for the total combined
direct and indirect aerosol forcing.

The first two parameters are important determinants of
the large-scale response of climate models to external
forcing (cf. Forest et al. 2000), while the total value of
aerosol forcing is highly uncertain (Houghton et al.
2001) and was therefore also varied. Note that all simu-
lations are forced with changes in greenhouse gases,
direct aerosols, and solar and volcanic forcing (see
Crowley et al. 2003 for details). For practical reasons,
we use the simulated Northern Hemispheric mid- to
high-latitude (30°–90°N) mean annual-mean tempera-
ture to assess the variations in response that result from
the prescribed variations in parameter settings and
aerosol forcing.

We chose one of the simulations, whose parameters
characterize the CCCma models (sensitivity 3.5°C, 30°–
90°N aerosol forcing of 	2 W m	2, and midrange ocean
heat uptake) and determined by simple linear regres-
sion the scaling that brings this simulation into closest
agreement to each member of the suite of simulations.
The scaling factors range between 0.15 and 1.84 for the
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1950–99 period when all three parameters are varied.
The range becomes 0.57 to 1.15 if climate sensitivity is
the only free parameter (with diffusivity fixed to 1.9
cm2 s	1 and the 30°–90°N average aerosol forcing set to
	2.0 W m	2). The ranges are wider if the entire twen-
tieth century is used to determine the scaling factors
(0.50 to 1.20 if only the sensitivity is varied). The asym-
metry of the scaling ranges, with a greater part of the
range below unit scaling than above, reflects the fact
that CCCma’s models have a moderately large climate
sensitivity.

Using these results as guidance and acknowledging
that not all sources of uncertainty have been taken into
account, it would be appropriate for a simple Gaussian
prior that gives the greatest prior likelihood to � � 1 to
have variance �2 � 0.25. This yields a plus or minus two
standard deviation prior uncertainty range for � of 0.0
to 2.0 that is inclusive of the ranges derived above, and
provides a central plus or minus one standard deviation
range for � of 0.5 to 1.5.

To examine the sensitivity of the results to a range of
plausible choices of prior, we construct three alterna-
tive priors, each of which is noncommittal on the cli-
mate change question.

The prior distribution we use most extensively (Fig.
1a) is similar to that used by Berliner et al. (2000). It is
a mixture of two Gaussian distributions given by

�1��� � p��0, �1
2� � �1 	 p���1, �2

2�, �5�

where p � 1/2 and the component distribution vari-
ances �2

1 and �2
2 are set to 0.25. A value of p other than

1/2 could be used to reflect the analyst’s degree of belief
that the signal X is either present (p near 0) or absent
(p near 1) in the observations y (Berliner et al. 2000;
Min et al. 2004). The choice of prior with p � 1/2 gives
equal weight to the possibilities that the GS signal is
either absent or present in the data, and conditional on
the latter, reflects our estimates of the effect of climate
model and forcing uncertainty on �. The width of the
prior conditional on the former possibility is set to the
same value for convenience. The resulting mixture dis-
tribution gives the greatest amount of weight to � val-
ues in the interval [0, 1], but does not give preference to
any particular subset of values in this range.

To ensure that our results are not sensitive to the
choice of prior, we consider two additional distributions
that express prior knowledge and uncertainty, or the
lack thereof, in different ways. The first, �0 (not
shown), is identical to �1 except that the variance of its
two components is only 0.1 instead of 0.25. This prior is
still noncommittal about whether the GS signal is
present in the observations, but it expresses greater
confidence that the climate model is able to respond
correctly to the specified GS forcing. The other prior
distribution we consider is the noninformative prior,
�2(�) 
 1, an improper distribution that gives equal
weight to all values of � between 	� and � (Fig. 1b).
This distribution expresses a complete absence of prior
knowledge about � by not favoring any value of � over
another.

f. The posterior distribution

As indicated in section 2b, the posterior distribution
is derived via Bayes’ theorem [Eq. (2)] from the distri-
bution of �̂ conditional on �, which is also known as the
likelihood function, and the prior distribution.

Assuming that � has a multivariate Gaussian distri-
bution, the distribution of �̂ conditional on � is ap-
proximately f(�̂ |�) � �(�, �̂2), where �̂2 [Eq. (4)] is the
estimated variance of �̂ and �(·, ·) is a Gaussian prob-
ability density function. The distribution is approximate
because �̂2 is estimated. However, this estimate is
known to be consistent, and thus the quality of this
approximation will improve as the size of the samples
available for calculating covariance estimates ĈN and
C̃N increases.

Using this approximation in (2) together with prior
distribution �1 given by (5) results in a posterior distri-
bution that is given by

�1�� | �̂� � p̃���̃1, �̃1
2� � �1 	 p̃����̃2, �̃2

2�. �6�

FIG. 1. Prior distribution (a) �1(�) and (b) �2(�).
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This is again a mixture of two Gaussian distributions
(see Berger 1985, 127–128, 206; Berliner et al. 2000), in
this case with

�̃1 �
�1

2�̂

�1
2 � �̂2 , �̃1

2 �
�1

2�̂2

�1
2 � �̂2 ,

�̃2 �
�2

2�̂ � �̂2

�2
2 � �̂2 , �̃2

2 �
�2

2�̂2

�2
2 � �̂2, and

p̃ � �1 �
1 	 p

p ��1
2 � �̂2

�2
2 � �̂2

exp�	0.5���̂ 	 1�2

�2
2 � �̂2 	

�̂2

�1
2 � �̂2���	1

.

The posterior that results from prior �0, which is a mix-
ture of Gaussian components with variances �1 � �2 �
0.1, is identical, except that different values of �1 and �2

are used in the expressions above. Finally, the posterior
distribution that corresponds to the improper (uninfor-
mative) prior �2 can be shown to be

�2�� | �̂� � ���̂, �̂2�, �7�

where �̂ and �̂2 are given by Eqs. (3) and (4). Note that
in this case the posterior is simply that likelihood func-
tion that is often used to make frequentist inferences
about �.

g. Detection and attribution assessment

The posterior distributions are used to make detec-
tion and attribution assessments by calculating the pos-
terior probabilities that � lies in predefined detection
(D) and attribution (A) regions, respectively.

We have chosen to define the detection region as D
� [0.1, �). We leave open the question of how we
should interpret a scaling factor, of say, � � 0.1 (the
climate model response is 10 times the observed re-
sponse) or � � 10 (the model response is only 1/10 the
observed response), possibilities that are both con-
tained within D. However, we acknowledge that such
an outcome would raise important questions about the
climate model and/or the completeness and accuracy of
the specification of the external forcing to the climate
model. Thus others may want to define D differently. In
any case, given a defensible definition of D, detection is
claimed if the posterior probability that � ∈ D, which
we denote by PD|�̂ � Pr(� ∈ D | �̂), is large.

The exact interpretation of a “large” posterior prob-
ability is a matter of judgment, but we can be guided by
the use of Bayes’ factors (e.g., see Kass and Raftery
1995, and references therein). The Bayes factor B is the

scaling factor that relates the prior odds of detection to
the posterior odds of detection through the equation

PD|�̂

1 	 PD|�̂
� B

Pr�� ∈ D�

1 	 Pr�� ∈ D�
. �8�

That is, the Bayes factor is the ratio of the posterior
odds to the prior odds. Jeffreys (1935) first proposed
the Bayes factor as a way of comparing scientific theo-
ries. Kass and Raftery (1995), following Jeffreys (1961),
suggest that 3 � � � 20 indicates “positive” evidence
for the hypothesis that is being evaluated, that 20 � �
� 150 indicates “strong” evidence, and that B � 150
represents “very strong” evidence. The prior odds of
detection using definition D are easily shown to be ap-
proximately 9:4 under prior �1. Thus a posterior prob-
ability of detection PD|�̂ � 0.978 is required to obtain a
Bayes factor that indicates strong evidence for detec-
tion, while PD|�̂ � 0.997 is required to conclude that
there is very strong evidence.

As noted previously, statistical evidence that the cli-
mate model has responded correctly to historical exter-
nal forcing is an important aspect of the overall attri-
bution assessment. Thus it is reasonable to define the
attribution region A as a subset of the detection region
that contains the point � � 1. A large posterior prob-
ability that � ∈ A, which we denote by PA /�̂ � Pr(� ∈
A | �̂), provides evidence in support of attribution.

For purposes of illustration, we consider an attribu-
tion region defined as A � (0.8, 1.2). This particular
choice of A implies that the criteria for making an at-
tribution claim should include a high posterior likeli-
hood that the model response to forcing is within 20%
of observed. Further discussion of the choice of A is
given in section 4.

As with detection, we may use the Bayes factors to
guide the interpretation of PA /�̂. The prior odds of at-
tribution given our particular definition of A are ap-
proximately 0.22:1 under prior �1. Under these circum-
stances a posterior probability PA /�̂ � 0.97 would rep-
resent very strong evidence for consistency between
model and observed response to forcing, while PA /�̂ �
0.81 would still represent strong evidence.

3. Results

The residual consistency test statistic reported in
Zwiers and Zhang (2003) suggests that our analysis
should be conducted with approximately 15–25 EOFs
retained. We therefore use truncations in that range.
Figure 2 displays the posterior distribution �1 obtained
for time periods 1900–49 and 1950–99 with 15, 20, and
25 EOFs retained. As can be seen, the posterior is not
very sensitive to the number of EOFs retained over this
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truncation range. The posterior is somewhat wider for
1900–49 than that for 1950–99 for truncations in the
15–25 EOF range that are shown. This occurs because
there is more missing data in the earlier period and
because the signal is weaker. The width of the posterior
[Eq. (6)] depends upon �̂2, which in turn depends in-
versely upon the generalized inner product of �̂ with
itself [Eq. (4)]. The latter increases when the signal is
stronger and when the signal vector is longer, and thus
the posterior narrows under those circumstances.

Most of the posterior probability in the 1950–99
analysis is allocated to � values between 0.4 and 0.8
when 20 EOFs are used, suggesting that the mean
model response to the historical forcing changes is
somewhat stronger than indicated by the observed tem-
perature changes. This may, in part, be the result of a
downward bias in the estimate of � that occurs because
some noise from internal climate variability remains in
the estimated GS signal even after averaging the six
available forced climate simulations. However, fitting
the regression model by means of the total least squares
algorithm (Allen and Stott 2003) to account for noise in

the estimated signal pattern increases �̂ only slightly.
The somewhat too strong model response may also be
due to missing, and probably net negative, forcings
(Mitchell et al. 2001) such as the indirect effects of
sulphate aerosols and the combined effect of solar and
volcanic forcing.

Figure 3 shows the posterior probabilities that � lies
in the detection and attribution regions that are calcu-
lated from �1(� | �̂) for each time period. The probabil-
ity of detection PD|�̂ is greater than 0.998 for both 1900–
49 and 1950–99 when 20 EOFs are retained, indicating
that it is highly unlikely (very strong evidence) that the
observed temperature changes during these periods are
entirely the result of natural internal climate variability.
Similar results are obtained for 1910–59 and 1940–89.

FIG. 2. Posterior distribution derived using prior �1(�) for (a)
1900–49 and (b) 1950–99 when 15, 20, and 25 EOFs are retained.

FIG. 3. (a) Detection probability PD|�̂ for the six time periods
1900–49, 1910–59, . . . , 1950–99 as a function of the number of
EOFs retained where the detection region is D � [0.1, �). (b) As
above, except the posterior attribution probability PA|�̂ is dis-
played. This probability takes only anthropogenic forcing into
account and is obtained using the attribution region that is given
by A � (0.8, 1.2). This definition of A imposes a very stringent
attribution criterion. A broader, but still reasonable criterion,
such as A � (0.5, 1.5), results in greater values of PA/�̂ in the range
0.7 to 0.9 for the 1950–99 period. See text for a detailed discussion
of the interpretation of PA/�̂ and the selection of A.
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For the other two time periods, the probability of de-
tection ranges between 0.4 and 0.8. Work by others
(e.g., Stott et al. 2000, 2001; Hegerl et al. 2003) suggests
that the nonmonotonic nature of the warming during
the twentieth century that underlies these results can
only be adequately explained by considering both the
anthropogenic forcing factors investigated here and
natural external forcing factors such as solar and vol-
canic forcing.

The probability of attribution PA/�̂ that is computed
from �1(� | �̂) with 20 EOFs retained is less than 0.5 for
all time periods and ranges between 0.1 and 0.3 for
truncations with 15 to 25 EOFs for the 1950–99 period.
These probabilities are not large, and thus attribution is
not strongly supported when the posterior is inter-
preted using our specific choice of attribution region A.
The choice of A and the implications for attribution are
further discussed in section 4.

We repeated our analysis with the noninformative
prior distribution �2. The resulting posterior distribu-
tion �2(� | �̂) (not shown) is somewhat wider than
�1(� | �̂). Correspondingly, the probabilities of detec-
tion and attribution calculated from �2(� | �̂) are
slightly smaller than those displayed in Fig. 3. Specifi-
cally, the probability of detection is about 0.0001 less
than that reported above and the probability of attri-
bution is about 0.01 less. Results obtained using prior
distribution �0 are similar to those obtained with �1.
Overall, results appear to be insensitive to variations in
prior distributions that vary the way they express un-
certainty about the climate model response to GS forc-
ing but are similarly noncommittal about whether there
has been an anthropogenic influence on climate in the
twentieth century. Less moderate prior positions,
where greater weight is put on the possibility that � �
1, or depending on perspective, � � 0, may result in a
somewhat more narrowly defined posterior distribu-
tion.

4. Conclusions and discussion

We have described a Bayesian approach to detection
and attribution that was first proposed by Berliner et al.
(2000). The method is based on the standard optimal
fingerprinting approach of Hasselmann (1979, 1997). In
contrast to Berliner et al., the details of our implemen-
tation of the optimal fingerprinting component of the
method are similar to those used in recent optimal fin-
gerprinting studies (e.g., Allen and Tett 1999; Allen et
al. 2004). In addition, we used a series of sensitivity
experiments with an energy balance model to derive
“ballpark” estimates of the prior uncertainty of the
scaling factor on the climate-model-simulated response

to external forcing. These estimates helped inform our
choices of parameters for the prior distributions used in
our study.

As an example, we assessed whether the combined
effect of greenhouse gases and sulfate aerosols as simu-
lated by the CCCma climate models (the CCCma “GS”
signal) is detectable in the observed global surface tem-
perature record in the twentieth century. Furthermore,
we also assessed whether the posterior distribution for
the scaling factor on the GS signal provides evidence to
support attribution. The assessment was made with
three prior distributions that are noncommittal on the
question of whether there has been an anthropogenic
influence on the climate of the twentieth century. We
used specific assessment criteria that were defined in
terms of predefined sets of scaling factors (D and A) and
predefined posterior probability thresholds. The latter
were determined by using Bayes factors to associate
posterior probabilities with specific levels of “strength
of evidence.”

Consistent with earlier studies, our Bayesian analysis
indicates that the anthropogenic forcing signal is detect-
able in the early and late halves of the twentieth cen-
tury. Note, however, that the early-century anthropo-
genic climate change signal may be somewhat con-
founded with the response to natural forcing changes
during, and prior to, this period. Tett et al. (1999) and
others have suggested that solar forcing changes may
also have contributed to the early warming. However,
all studies performed to date suggest that the anthro-
pogenic forcing and response dominate during the lat-
ter half of the twentieth century (Mitchell et al. 2001;
International Ad Hoc Detection and Attribution
Group 2005).

Our results are insensitive to our choice of prior dis-
tribution because our selection of priors does not in-
clude distributions that express strong, a priori posi-
tions on anthropogenic climate change. The resulting
posterior distributions have considerable spread, and
thus we were not able to contribute strong evidence to
an attribution assessment with our specific definition of
the attribution region A. For 1950–99, when surface
temperature data coverage is the most complete, most
of the posterior probability is allocated to � values less
than unity, suggesting that the CCCma climate models
may have oversimulated the combined response to
greenhouse gas and direct sulphate aerosol forcing.
This may, in part, be the result of missing forcings such
as the indirect effects of sulphate aerosols, the effects of
other types of aerosols such as mineral dust and car-
bonaceous aerosols, the effects of the changing abun-
dance of tropospheric and stratospheric ozone, and the
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effects of variations in natural external forcing of the
climate system.

Our findings, which are preliminary in nature, do not
in any way negate the Houghton et al. (2001) conclu-
sion that “. . . most of the warming observed over the
last 50 years is attributable to human activities.”
Houghton et al. used a very broad range of evidence to
make their attribution assessment, including a number
of optimal detection studies using several different
coupled climate models. What our findings do tell us is
that the limited observational record, together with
missing forcings and possible bias in the CCCma model,
preclude the possibility of constructing a narrow poste-
rior distribution that is centered directly on � � 1. Thus
strong evidence supporting attribution does not emerge
when using an attribution region that imposes a rela-
tively stringent criterion, where the amplitude of the
model response must be within 20% of observed. How-
ever, if we use a less stringent criterion with, say, A �
(0.5, 1.5) (the model response must be within 50% of
observed), we then find that the posterior probability
that � ∈ A increases to levels of approximately 0.7 to 0.9
(depending upon EOF truncation) for the 1950–1999
period. This corresponds to Bayes factors in the range
3.2 � B � 12.4, giving an indication of “positive” evi-
dence to support an attribution assessment. Relaxing
the attribution criterion might be reasonable if taking
into consideration external forcings not included in the
CCCma GS simulations that may have a pattern of re-
sponse similar to the GS response.

The absence of strong evidence to support attribu-
tion in the presence of “very strong” evidence for de-
tection requires further consideration. As already sug-
gested, there are several factors that may affect the
amount of evidence that the posterior distribution on �
can provide to support attribution. One of these is the
length of the observational record. The posterior dis-
tribution should become narrower as the analysis pe-
riod is made longer and extended into the future.

Another factor that affects the width of the posterior
distribution is the signal strength. The latter is expected
to continue to increase and therefore should contribute
to a reduction in the width of the posterior as the analy-
sis period shifts into the future. To quantify when
strong evidence in support of an attribution assessment
might emerge, we reevaluated the posterior distribu-
tion �1(� | �̂) using the 1950–99 values of the scaling
factor �̂, but estimates of future values of �̂2. The latter
is strongly affected by the signal strength. The steps in
our calculation were as follows:

• �he future estimates of �̂2 [(Eq. (4)] were obtained
using the 1950–99 observational mask and the corre-

sponding 1950–99 covariance matrices, but using a
future five-decade signal vector. The latter was
masked in the same way as the 1950–99 observations
and calculated relative to the same base period. This
was repeated for all five-decade periods beginning
with 1960–2009 and ending with 2050–2099.

• �he estimated future values of �̂2 and the 1950–99
values for �̂ were substituted into �1(� | �̂). For each
“posterior” that was obtained in this way, we calcu-
lated the probability that � ∈ (�p 	 0.2, �p � 0.2)
where �p is the mode of the posterior distribution.
This, in effect, is the attribution probability PA|�̂ that
would be obtained for A � (0.8, 1.2) when �̂ � 1.

The results of this exercise are displayed in Fig. 4 for
truncations with 15, 20, and 25 EOFs. The graph has
been extended to the left using the posteriors that are
appropriate for those historical periods. By centering
the attribution region on the mode of the posterior dis-
tribution, we have made the assumption that bias in the
estimate of � will not be a problem with signals derived
from future climate models. With this assumption, the
suggestion is that strong or very strong evidence in sup-
port of attribution, based on a requirement that the
model response to external forcing should be within
20% of observed, should emerge by 2020.

A third factor that affects the posterior distribution is
the accuracy of our estimated covariance matrices.
Since these matrices are estimated from climate model
control runs they may be biased by model errors, al-
though the use of multiple models (Gillett et al. 2002)
can help to reduce that bias. The matrices also remain
uncertain because of the limited length of the control
simulations.

A fourth factor is whether all of the prior information

FIG. 4. Estimated future attribution probability PA/�̂, where A �
(�p 	 0.2, �p � 0.2) and �p indicates the mode of the posterior
distribution �1(� | �̂). Details of the calculation are given in the
text.
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that is available for inclusion in the analysis via the
prior distribution has, in fact, been used. In our ex-
ample we purposefully used priors that are noncommit-
tal on whether there has been an anthropogenic influ-
ence on climate. Use of a prior distribution centered on
� � 1, rather than on � � 0.5 as in our noncommittal
priors, will result in a somewhat sharper posterior dis-
tribution and an increase in the posterior probability
that � ∈ A. �he multiple lines of evidence for attribu-
tion from sources other than surface temperature data
that are described in Houghton et al. (2001) and sub-
sequent literature (e.g., International Ad Hoc Detec-
tion and Attribution Group 2005) justifies the use of a
prior distribution that does not sit on the fence. Recent
experience with the detection of externally forced sig-
nals in the paleoclimate record (e.g., Hegerl et al. 2003)
provides further justification.

Using a Gaussian prior �3 � �(1, 0.25) results in
attribution probabilities PA|�̂ � 0.11 to 0.37 for 1950–99
when using between 15 and 25 EOFs and when A �
(0.8, 1.2). This is slightly greater than the result ob-
tained with the noncommittal prior. However, the
corresponding Bayes factors, which lie in the range
0.3 � B � 1.3, still do not indicate support for attribu-
tion. When we increase the size of the attribution re-
gion to A � (0.5, 1.5) we find that PA|�̂ ranges from 0.81
to 0.91, which is again somewhat larger than obtained
with the noncommittal prior. In this case the corre-
sponding Bayes factors range between 2 and 4.7, indi-
cating that we now have weaker evidence in support of
attribution than obtained with the noncommittal prior.

This is an example of the effect that the choice of
prior has on the criteria for the assessment of the evi-
dence in support of attribution (and also detection)
when evidence is evaluated by means of Bayes factors.
The relatively strong prior position on attribution that
is expressed with distribution �3 has substantially larger
prior odds of attribution than the noncommittal prior
�1 (approximately 2.2:1 as opposed to 0.22:1). Conse-
quently, the posterior odds of attribution must be cor-
respondingly larger to achieve the same assessment of
the strength of evidence. For example, to be identified
as strong evidence, the posterior odds would have to be
approximately 44:1 when using prior �3 while posterior
odds of approximately 4.4:1 would be sufficient when
using �1.

This illustrates an important benefit of using Bayes
factors to assess evidence in support of detection or
attribution. By comparing posterior odds ratios with
corresponding prior odds ratios, the Bayes factor re-
quires inferences to be heavily dependent on evidence
that is obtained from the data. If the analyst has taken
a strong prior position on detection or attribution, the

Bayes factor requires the data to substantially improve
the prior assessment of the odds of detection or attri-
bution before declaring that there is, in fact, strong sup-
porting evidence for that position.

The ability to incorporate prior knowledge into the
analysis, particularly with regards to sources of uncer-
tainty, is an important advantage of the Bayesian ap-
proach. This knowledge can be both subjective and ob-
jective and can include prior information about wheth-
er there has been a climatic response to anthropogenic
forcing, about climate model uncertainty, and about the
nature of the response to natural external forcing
changes in, for example, paleo records, as discussed
above. Another important advantage of the Bayesian
approach is that the analyst must explicitly define the
criteria that are used to assess evidence in support of
detection and attribution. Admittedly, the choice of
prior and the definitions of D and A are subjective, but
they transparently reflect the perspective of the analyst
making the climate change assessment.

In comparison, the frequentist criteria for the assess-
ment of evidence are much less explicit. The frequentist
criterion for detection is clear enough (we seek evi-
dence that the observed change global surface tempera-
ture is not consistent with HD), but exactly what the
rejection of HD means in probabilistic terms is not
clear. More problematically, the standard criterion for
the assessment of evidence in support of attribution is
the failure to reject HA (Berliner et al. 2000). This means
that the attribution criterion is relaxed, rather than
made more stringent, when the significance level is re-
duced, say, from 10% to 1%. Also, perversely, attribu-
tion becomes more difficult with the standard approach
as the observed record increases in length for a given
signal strength. The analyst does not have direct control
over the definition of the criteria for detection or attri-
bution in either case (this happens, at best, by varying
the significance level). In the Bayesian setting we must
give, and defend, clear definitions of the criteria used to
assess the evidence for detection and attribution. Once
having defined the criteria, we can calculate the prob-
abilities that they have been met. These posterior prob-
abilities, in turn, can be used in a decision theoretic
framework to make rational adaptation and mitigation
decisions that minimize expected costs and losses.
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