128 research outputs found

    Objective automatic assessment of rehabilitative speech treatment in Parkinson's disease

    Get PDF
    Vocal performance degradation is a common symptom for the vast majority of Parkinson's disease (PD) subjects, who typically follow personalized one-to-one periodic rehabilitation meetings with speech experts over a long-term period. Recently, a novel computer program called Lee Silverman voice treatment (LSVT) Companion was developed to allow PD subjects to independently progress through a rehabilitative treatment session. This study is part of the assessment of the LSVT Companion, aiming to investigate the potential of using sustained vowel phonations towards objectively and automatically replicating the speech experts' assessments of PD subjects' voices as “acceptable” (a clinician would allow persisting during in-person rehabilitation treatment) or “unacceptable” (a clinician would not allow persisting during in-person rehabilitation treatment). We characterize each of the 156 sustained vowel /a/ phonations with 309 dysphonia measures, select a parsimonious subset using a robust feature selection algorithm, and automatically distinguish the two cohorts (acceptable versus unacceptable) with about 90% overall accuracy. Moreover, we illustrate the potential of the proposed methodology as a probabilistic decision support tool to speech experts to assess a phonation as “acceptable” or “unacceptable.” We envisage the findings of this study being a first step towards improving the effectiveness of an automated rehabilitative speech assessment tool

    Defining clinical subtypes of adult asthma using electronic health records : analysis of a large UK primary care database with external validation

    Get PDF
    Acknowledgments EMFH was supported by a Medical Research Council PhD Studentship (eHERC/Farr). This work is carried out with the support of the Asthma UK Centre for Applied Research [AUKAC-2012-01] and Health Data Research UK which receives its funding from HDR UK Ltd (HDR-5012) funded by the UK Medical Research Council, Engineering and Physical Sciences Research Council, Economic and Social Research Council, Department of Health and Social Care (England), Chief Scientist Office of the Scottish Government Health and Social Care Directorates, Health and Social Care Research and Development Division (Welsh Government), Public Health Agency (Northern Ireland), British Heart Foundation and the Wellcome Trust. The funders had no role in the study and the decision to submit this work to be considered for publication. This Project is based in part/wholly on Data from the Optimum Patient Care Research Database (opcrd.co.uk) obtained under licence from Optimum Patient Care Limited and its execution is approved by recognised experts affiliated to the Respiratory Effectiveness Group. However, the interpretation and conclusion contained in this report are those of the author/s alone. This study makes use of anonymised data held in the Secure Anonymised Information Linkage (SAIL) Databank. We would like to acknowledge all the data providers who make anonymised data available for research. SAIL is not responsible for the interpretation of these data.Peer reviewedPublisher PD

    A Simple Filter Benchmark for Feature Selection

    Get PDF
    Abstract A new correlation-based filter approach for simple, fast, and effective feature selection (FS) is proposed. The association strength between each feature and the response variable (relevance) and between pairs of features (redundancy) is quantified via a simple nonlinear transformation of correlation coefficients inspired by information theoretic concepts. Furthermore, the association strength between a set of features and the response variable (feature complementarity) is explicitly addressed using a similar nonlinear transformation of partial correlation coefficients, where a feature is selected conditionally upon its additional information content when combined with the features already selected in the forward sequential process. The new filter scheme overcomes several major issues associated with competing FS algorithms, including computational complexity and difficulty in implementation, and can be used on both multi-class classification and regression problems. Experiments on five synthetic and twelve real datasets demonstrate that the proposed filter outperforms popular alternative filter approaches in terms of recovering the correct features. We envisage the proposed scheme setting a competitive benchmark against which more sophisticated FS algorithms can be compared. Documented Matlab source code is available on the first author's website

    Novel speech signal processing algorithms for high-accuracy classification of Parkinson's disease

    Get PDF
    There has been considerable recent research into the connection between Parkinson's disease (PD) and speech impairment. Recently, a wide range of speech signal processing algorithms (dysphonia measures) aiming to predict PD symptom severity using speech signals have been introduced. In this paper, we test how accurately these novel algorithms can be used to discriminate PD subjects from healthy controls. In total, we compute 132 dysphonia measures from sustained vowels. Then, we select four parsimonious subsets of these dysphonia measures using four feature selection algorithms, and map these feature subsets to a binary classification response using two statistical classifiers: random forests and support vector machines. We use an existing database consisting of 263 samples from 43 subjects, and demonstrate that these new dysphonia measures can outperform state-of-the-art results, reaching almost 99% overall classification accuracy using only ten dysphonia features. We find that some of the recently proposed dysphonia measures complement existing algorithms in maximizing the ability of the classifiers to discriminate healthy controls from PD subjects. We see these results as an important step toward noninvasive diagnostic decision support in PD

    Introducing non-linear analysis into sustained speech characterization to improve sleep apnea detection

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-25020-0_28Proceedings of 5th International Conference on Nonlinear Speech Processing, NOLISP 2011, Las Palmas de Gran Canaria (Spain)We present a novel approach for detecting severe obstructive sleep apnea (OSA) cases by introducing non-linear analysis into sustained speech characterization. The proposed scheme was designed for providing additional information into our baseline system, built on top of state-of-the-art cepstral domain modeling techniques, aiming to improve accuracy rates. This new information is lightly correlated with our previous MFCC modeling of sustained speech and uncorrelated with the information in our continuous speech modeling scheme. Tests have been performed to evaluate the improvement for our detection task, based on sustained speech as well as combined with a continuous speech classifier, resulting in a 10% relative reduction in classification for the first and a 33% relative reduction for the fused scheme. Results encourage us to consider the existence of non-linear effects on OSA patients’ voices, and to think about tools which could be used to improve short-time analysis.The activities described in this paper were funded by the Spanish Ministry of Science and Innovation as part of the TEC2009-14719-C02-02 (PriorSpeech) project

    Neurological Disease Detection and Monitoring from Voice Production

    Get PDF
    The dramatic impact of neurological degenerative pathologies in life quality is a growing concern. It is well known that many neurological diseases leave a fingerprint in voice and speech production. Many techniques have been designed for the detection, diagnose and monitoring the neurological disease. Most of them are costly or difficult to extend to primary attention medical services. Through the present paper it will be shown how some neurological diseases can be traced at the level of phonation. The detection procedure would be based on a simple voice test. The availability of advanced tools and methodologies to monitor the organic pathology of voice would facilitate the implantation of these tests. The paper hypothesizes that some of the underlying mechanisms affecting the production of voice produce measurable correlates in vocal fold biomechanics. A general description of the methodological foundations for the voice analysis system which can estimate correlates to the neurological disease is shown. Some study cases will be presented to illustrate the possibilities of the methodology to monitor neurological diseases by voic

    A Data-Driven Typology of Asthma Medication Adherence using Cluster Analysis

    Get PDF
    Asthma preventer medication non-adherence is strongly associated with poor asthma control. One-dimensional measures of adherence may ignore clinically important patterns of medication-taking behavior. We sought to construct a data-driven multi-dimensional typology of medication non-adherence in children with asthma. We analyzed data from an intervention study of electronic inhaler monitoring devices, comprising 211 patients yielding 35,161 person-days of data. Five adherence measures were extracted: the percentage of doses taken, the percentage of days on which zero doses were taken, the percentage of days on which both doses were taken, the number of treatment intermissions per 100 study days, and the duration of treatment intermissions per 100 study days. We applied principal component analysis on the measures and subsequently applied k-means to determine cluster membership. Decision trees identified the measure that could predict cluster assignment with the highest accuracy, increasing interpretability and increasing clinical utility. We demonstrate the use of adherence measures towards a three-group categorization of medication non-adherence, which succinctly describes the diversity of patient medication taking patterns in asthma. The percentage of prescribed doses taken during the study contributed to the prediction of cluster assignment most accurately (84% in out-of-sample data)
    corecore