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ABSTRACT Telemonitoring of Parkinson’s Disease (PD) has attracted considerable research interest 

because of its potential to make a lasting, positive impact on the life of patients and their carers. Purpose-

built devices have been developed that record various signals which can be associated with average PD 

symptom severity, as quantified on standard clinical metrics such as the Unified Parkinson’s Disease Rating 

Scale (UPDRS). Speech signals are particularly promising in this regard, because they can be easily recorded 

without the use of expensive, dedicated hardware. Previous studies have demonstrated replication of UPDRS 

to within less than 2 points of a clinical raters’ assessment of symptom severity, using high-quality speech 

signals collected using dedicated telemonitoring hardware. Here, we investigate the potential of using the 

standard voice-over-GSM (2G) or UMTS (3G) cellular mobile telephone networks for PD telemonitoring, 

networks that, together, have greater than 5 billion subscribers worldwide. We test the robustness of this 

approach using a simulated noisy mobile communication network over which speech signals are transmitted, 

and approximately 6000 recordings from 42 PD subjects. We show that UPDRS can be estimated to within 

less than 3.5 points difference from the clinical raters’ assessment, which is clinically useful given that the 

inter-rater variability for UPDRS can be as high as 4-5 UPDRS points. This provides compelling evidence 

that the existing voice telephone network has potential towards facilitating inexpensive, mass-scale PD 

symptom telemonitoring applications. 

INDEX TERMS Decision support tool, Parkinson’s disease, nonlinear speech signal processing, 

telemedicine

I. INTRODUCTION 

Parkinson’s Disease (PD) is a chronic neurodegenerative 

disorder characterized by the progressive deterioration of 

motor function as well as the emergence of considerable non-

motor problems [1]. The PD incidence rate is approximately 

20/100,000 [2] and the prevalence rate exceeds 100/100,000 

[3]; moreover it is believed that an additional 20% of people 

with Parkinson’s (PWP) might be undiagnosed [4]. Early PD 

stages are mainly characterized by three hallmark symptoms: 

bradykinesia (slow and reduced amplitude of movement), 

rigidity (resistance to passive movement), and tremor (while 

at rest) [5].  

Medication and surgical intervention can alleviate some of 

the symptoms and improve quality of life for most PWP [6], 

although there is currently no known cure. To optimize 

treatment, PWP are typically followed up by expert clinical 

staff at relatively sparse (six to twelve month) intervals. 

Unfortunately, this contemporary triage of symptom 

management likely underestimates the true fluctuation of 

symptom severity. More regular PD symptom assessment 

would be of considerable benefit, for example, to optimize 

treatment regimes, but this is not possible given the available 

mailto:atsanas@ed.ac.uk
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resources and the established assessment setting which 

requires the physical presence of PWP in the clinic.  

In current clinical practice, medical raters physically 

examine PWP and map symptom severity on appropriate 

clinical scales (metrics). The Unified Parkinson’s Disease 

Rating Scale (UPDRS) [7] is the most widely used clinical 

metric for quantifying PD impairment [8], and attempts to 

quantify the full breadth of possible motor (muscle), non-

motor PD symptoms, and complications of dopamine 

replacement therapies.  The motor symptoms are quantified 

using the motor-UPDRS, which is a subset and highly 

correlated with the total UPDRS  [9]. The motor-UPDRS 

ranges between 0 and 108, where 0 denotes healthy state, and 

108 severe disabilities, and the total-UPDRS lies in the range 

between 0 and 176. In addition to UPDRS, the Hoehn and 

Yahr (H&Y) scale is often used, and it is possible to infer 

H&Y from UPDRS [10], [11]. Other clinical scales are 

sometimes used in some medical centers, but for the 

purposes of this study we shall confine our analysis 

exclusively on UPDRS.  

Speech disorders, which are of particular interest in this 

study, may be amongst the earliest PD onset indicators [12], 

and are reported in the vast majority of PWP [13]. 

Furthermore, strong empirical evidence has emerged 

associating speech performance degradation and PD 

symptom severity [12-17]. Recent work has highlighted the 

intrinsic link between speech and specific motor 

functionality in PD in terms of freezing [18], sensory 

impairment [19], and determining genetically-determined 

PD (through Leucine-Rich Repeat Kinase 2, LRRK2 

mutations) [20]. 

Most PD studies rely on the use of expensive, purpose-

built specialized hardware to record signals which are 

characteristic of PD symptoms, e.g. [9], [21-24]. We have 

previously demonstrated the considerable potential of speech 

to replicate the clinical scale UPDRS [9], [24-26], using high 

quality speech signals collected with Intel Corporation’s At-

Home Testing Device (AHTD) [21]. This device collects 

high quality speech signals sampled at 24 kHz, following the 

established recommendation that a sampling frequency of at 

least 20 kHz should be used to extract clinically useful 

information [27].  

In this study, we investigate whether it is possible to 

accurately infer UPDRS using speech signals transmitted 

over the standard cellular mobile voice telephone network, 

using a detailed simulation of the entire digital 

communication process. The rationale for using the existing 

voice mobile phone network over specialized, purpose-built 

hardware such as the AHTD is that (a) the existing voice 

network reaches nearly 75% of the global population, (b) 

economies of scale and global market competition has 

brought the price of access down so that it is affordable to a 

majority of the global population, (c) mobile telephony 

allows freedom of movement for PWP, eliminating the need 

to carry additional equipment when leaving home. Thus, the 

standard phone network provides convenient means towards 

inexpensive and frequent PD severity assessments, 

facilitating monitoring and potentially assisting 

rehabilitation. Data-mining of speech signals obtained using 

the public telephone network to extract clinically useful 

information has recently shown promising results [28], [29], 

[30]. Similarly, Saenz-Lechon et al. [31] investigated the 

effect of different data transmission rates in automatic voice 

pathology detection, and concluded that compressing signals 

(down to at most 64 kbps) does not prevent accurate 

detection of vocal pathologies. 

We demonstrate that mobile phone technology could be 

useful in telemonitoring PD symptom severity, further 

endorsing previous findings that speech may offer a 

convenient framework for remote assessment [9], [24], [25]. 

II. DATA 

We use the voice data collected by Goetz et al. [21], 

described in detail in Tsanas et al. [9]. In brief, 52 subjects 

with idiopathic PD diagnosis up to five years from the time 

of the baseline clinical visit were recruited into a clinical trial 

to investigate the potential of the AHTD. All subjects gave 

written informed consent, and did not receive PD-related 

treatment for the six-month duration of the trial. They were 

asked to complete a range of tests weekly during a 

convenient, pre-specified time window (all tests can be 

completed in about 20-30 minutes). Sustained vowel /ah:/ 

phonations, where the subject is asked to sustain vowel 

phonation at a comfortable pitch for as long and as steadily 

as possible, were part of the test protocol. Here we focus 

exclusively on these sustained phonations. Subjects were 

diagnosed with PD if they had at least two of the three 

hallmark PD symptoms (bradykinesia, rigidity, tremor), 

without evidence of other forms of Parkinsonism. We did not 

apply any exclusion criteria related to specific PD symptoms 

(e.g. depression). We disregarded data from 10 participants 

– two that dropped out of the study early, and from eight 

additional PWP that did not complete at least 20 valid study 

sessions during the trial period. Therefore, in this study we 

analyze data from 42 PWP. 

Previously, we demonstrated that partitioning the data by 

gender is important in this application [9], [26], and hence 

males and females are studied separately here as well. The 

28 male subjects were 64.8±8.1 (mean ± standard deviation) 

years old, with a PD diagnosis 63.0±61.9 weeks since 

diagnosis at trial baseline. Their motor-UPDRS scores were: 

baseline 20.3±8.5, three months into the trial 21.9±8.7, six 

months into the trial 22.0±9.2, and total-UPDRS scores 

were: baseline 27.5±11.6, three months into the trial 

30.4±11.8, and six months into the trial 31.0±12.4. The 14 

female subjects were 63.6±11.6 years old, with a PD 

diagnosis 89.7±81.2 weeks since diagnosis at trial baseline. 

Their motor-UPDRS was: baseline 17.6±7.4, three months 

into the trial 21.2±10.5, six months into the trial 20.1±9.4, 

and their total-UPDRS was: baseline 24.2±9.1, three months 
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into the trial 27.4±12.1, and six months into the trial 

26.8±10.8. 

Six sustained vowel /ah:/ phonations were recorded each 

time the PD subject took the test: four at comfortable level 

of pitch and loudness, and two at twice the comfortable 

loudness (elicited with the instruction “twice as loud as the 

first time”). The signals were sampled at 24 kHz at 16 bit 

resolution. After initial processing to remove faulty 

phonations (e.g. patient coughing, failure to record 

phonation), we processed 4010 phonations for the male 

subjects, and 1865 phonations for the female subjects. 

Although the phonations were recorded weekly, the actual 

clinical assessments for motor-UPDRS and total-UPDRS 

were obtained at trial baseline, three months into the trial, 

and at six months into the trial. To obtain weekly UPDRS 

estimates to associate with the phonations we used piecewise 

linear interpolation going exactly through the measured 

baseline, three-month and six-month UPDRS assessments 

[9], [24], [25], [26], [32]. This assertion builds on strong 

empirical evidence suggesting that average symptom 

progression in early PD stages (up to about five years) is 

almost linear in non-medicated patients as observed in 

clinical metrics [33], [34]. The PWP in the AHTD trial were 

in early PD stages (up to five years from disease diagnosis) 

and remained non-medicated for the duration of the trial, 

aspects which justify the use of piecewise linear 

interpolation when filling in missing data. The tacit 

assumption is that PD symptom severity did not fluctuate 

wildly within the intervals where the clinical scores were 

obtained. Discretizing the response variable to transform a 

regression problem into a classification problem is well 

known in the machine learning literature, and often this step 

can lead to better prediction performance. We have found 

that in this application it is better to discretize the 

interpolated UPDRS scores and work with classifiers instead 

of regressors [9], [35]; hence both motor-UPDRS and total-

UPDRS were rounded to the closest integer value, giving rise 

to a multi-class classification setting. For another recent 

application from a different domain where this problem 

transformation was beneficial see [36]. 

For further details about the dataset and the AHTD data 

acquisition hardware, please refer to Tsanas et al. [9]. 

III. METHODS 

We re-iterate that the aim of the study is to investigate 

UPDRS estimation using speech signals transmitted over the 

standard cellular mobile voice telephone network. Given that 

the data available in the study has been collected using the high 

quality AHTD equipment we have used a digital 

communications simulation framework to study the distorted 

signals received through a hostile data transmission channel. 

The following section describes in detail the process used to 

simulate the data transmission and reception process of the 

raw speech signals so that they resemble realistic distorted 

signals we may expect to have in a practical cellular mobile 

telephony network. 

A. SIMULATION OF THE CELLULAR MOBILE 
TELEPHONY NETWORK 

Creating a realistic simulation of the cellular voice 

telephony network requires the following steps: (a) encoding 

the AHTD speech signals into bit-streams for transmission, 

(b) simulating the transmitter, radio channel, and receiver, 

and (c) decoding the transmitted bit-streams back into 

intelligible speech recordings. This application requires only 

one way (simplex) communication; PWP call into an 

automated voice messaging service and leave sustained 

vowel phonations. Predictions of symptom severity are 

extracted from these voice messages and clinical personnel 

suggest the appropriate course of action offline as a result of 

the estimated UPDRS. Moreover, the sustained vowel 

phonations need only be a few seconds long, that is, 

considerably shorter in duration than most telephone 

conversations.  

Fig. 1 presents the schematic diagram of the 

communication system used in this study. The main 

components of a digital communication system are the 

transmitter, the channel (physical medium connecting the 

transmitter and the receiver), and the receiver. The 

transmitter aims to assist the receiver to correctly recover the 

speech signal which may be distorted by the channel. We 

follow closely the studies of Tsanas [37], Ampeliotis and 

 

 
Fig. 1.  Schematic diagram of the digital communication process. ISI 

stands for Intersymbol Interference. 
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Berberidis [38], and Tuchler et al. [39] for the practical 

implementation. We summarize the data communications 

process in the Supplementary Material under section 1.1 

‘Overview of the data communication process’, and refer 

readers to specialized monographs for further background 

[40], [41].  

B. METHODOLOGY TO ANALYZE THE SPEECH 
SIGNALS RECOVERED AT THE RECEIVER 

We followed three steps to process the recovered 

phonations and extract clinically useful information: (a) 

feature extraction, where we applied speech signal 

processing algorithms to characterize the phonations and 

extract characteristic patterns (features), (b) feature 

selection, where a parsimonious (small, information-rich) 

subset of the originally computed features is selected in order 

to provide maximally useful information for predicting 

UPDRS, and (c) feature mapping, where a standard 

supervised learning algorithm was used to determine a 

functional form associating the selected feature subset with 

the clinical outcome (UPDRS). The rationale behind this 

methodology is that characteristic acoustic patterns in PWP’s 

voice are indicative of UPDRS. Although confounding 

factors may affect vocal performance (such as the subject’s 

emotional state, some pathological condition not related to 

PD, organic vocal pathology independent of PD, or 

pathologies due to tobacco abuse), it is unlikely these 

contaminate more than a handful of the approximately 6000 

recordings used here. We assumed that potential 

confounding factors do not dominate PWP’s voices to the 

extent that the extracted dysphonia measures do not provide 

clinically useful information for estimating UPDRS. 

Before characterizing the phonations by extracting 

dysphonia measures, we removed the vowel onset and offset 

choosing the three seconds in the middle of the phonation to 

simplify computational processing. The resulting three 

second signal was subsequently normalized to facilitate 

comparisons across recordings. 

Feature extraction 

We applied the dysphonia measures rigorously defined in 

Tsanas et al. [9] to the speech signals recovered at the 

receiver. We refer to that paper for detailed description of the 

concepts and rationale behind each algorithm. The 

MATLAB source code to compute these features is available 

on the first author’s website (https://www.darth-

group.com/software). Here, we briefly describe the most 

important families of dysphonia measures used in this and 

other studies. 

Some of the most widely used dysphonia measures are 

jitter and shimmer [27], [42]. They seek to capture the 

physiological observation that the vocal fold vibration 

pattern is nearly periodic in healthy voices, whilst it is 

disturbed in pathological voices [42]. Jitter characterizes 

deviations in fundamental frequency (F0), whereas shimmer 

characterizes deviations in amplitude. There is no unique 

definition of those dysphonia measures, and we investigated 

many jitter and shimmer variants [15] which are algorithmic 

variations of the same underlying concept. Quantifying vocal 

fold departure from near periodicity has inspired the 

development of the Recurrence Period Density Entropy 

(RPDE) [43], the Pitch Period Entropy (PPE) [44], the 

Glottal Quotient (GQ) [9], and F0-related measures [9]. GQ 

can be seen as an improved jitter-like family of measures, but 

working directly with vocal fold cycles instead of pre-

specified segments (e.g. 10 ms) of the speech signal. RPDE 

expresses the uncertainty in vocal fold cycle duration. PPE 

quantifies the impaired control of F0 in sustained phonations, 

taking into account normal vibrato. The F0-related measures 

include statistical summaries of F0 distributions, and F0 

differences compared to average age- and gender-matched 

healthy controls in the population. 

The second group of dysphonia measures characterize 

Signal to Noise Ratio (SNR)-like quantities. The 

physiological motivation for this group is that incomplete 

vocal fold closure leads to the creation of aerodynamic 

vortices which result in increased acoustic noise. Harmonic 

to Noise Ratio (HNR) [42], Detrended Fluctuation Analysis 

(DFA) [43], Glottal to Noise Excitation (GNE) [45], Vocal 

Fold Excitation Ratio (VFER) [9], and Empirical Mode 

Decomposition Excitation Ratio (EMD-ER) [9] are typical 

examples. GNE and VFER analyze the frequency ranges of 

the signal in bands of 500 Hz. Empirically, we found that 

frequencies below 2.5 kHz can be treated as ‘signal’, and 

everything above 2.5 kHz can be treated as ‘noise’ [9], [35] 

to define SNR measures using energy, nonlinear energy 

(Teager-Kaiser energy operator) and entropy concepts. 

EMD-ER is similarly motivated: the Hilbert-Huang 

transform [46] decomposes the original signal into its 

constituent components in decreasing order of contributing 

frequency. Then, the top (high frequency) components are 

taken to constitute noise, and the lower frequency 

components to constitute signal, to obtain SNR-like 

measures. 

Lastly, Mel Frequency Cepstral Coefficients (MFCC) 

have been traditionally used in speaker recognition 

applications, but also appear promising in biomedical speech 

signal processing contexts [9], [35], [47], [48]. Although the 

participants in this study were asked to sustain a vowel 

(hence theoretically the vocal folds have a steady oscillating 

pattern and the vocal tract remains completely steady), it is 

reasonable to argue that the articulators will exhibit some 

perturbation (similarly to the fact that the vocal folds will not 

vibrate with perfect periodicity, even for healthy controls 

when sustaining a vowel [27]). The MFCCs collectively 

characterize the short-term power spectrum of a speech 

signal on the nonlinear (Mel) scale, which approximates the 

human auditory system's response more closely than the 

linearly-spaced frequency bands. Thus, they inherently 

quantify the filtering effects of the vocal tract (if we consider 

the conceptually appealing source-filter voice production 

mechanism [27]). Therefore, MFCCs can be considered to 

https://www.darth-group.com/software
https://www.darth-group.com/software
https://en.wikipedia.org/wiki/Power_spectrum
https://en.wikipedia.org/wiki/Nonlinear_system
https://en.wikipedia.org/wiki/Mel_scale
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detect subtle changes in the position and motion of the 

articulators (tongue, lips) which are known to be affected in 

PD [13]. 

Overall, we applied 132 dysphonia measures to the speech 

database, each dysphonia measure producing a single real 

value per voice sample, resulting in a design matrix of size 

4010×132 for male PWP and a matrix of size 1865×132 for 

female PWP. 

Feature selection 

The use of a large number of features (132 in this study) 

makes it extremely difficult to discern meaningful patterns 

in the data, and may often be detrimental in the process of 

mapping the features onto the clinical outcome UPDRS. This 

problem is known as the curse of dimensionality, and arises 

because adequate population of the feature space requires 

that the number of voice samples increases exponentially 

with the number of features [49]. Contemporary algorithms 

that can map features onto outcomes may be very robust to 

the inclusion of potentially noisy or irrelevant features, and 

their predictive power may or may not be severely affected; 

however, a smaller feature set always facilitates insight into 

the problem by allowing interpretation of the most predictive 

features [50], [51]. An exhaustive search through all possible 

feature subset combinations is computationally impractical; 

feature selection (FS) algorithms are a principled approach 

to selecting a smaller (lower dimensional) feature subset. We 

refer to Guyon et al. [51] for a detailed overview of FS. 

Here, we compared four FS algorithms: (1) Least Absolute 

Shrinkage and Selection Operator (LASSO) [52], (2) 

Minimum Redundancy Maximum Relevance (mRMR) [53], 

(3) RELIEF [54], and (4) feature importance in Random 

Forests (RF) [55]. We applied the FS voting strategy that was 

previously described in Tsanas et al. [35], [48], [56] to 

identify the final feature subset 𝑆 for each FS algorithm, 

which was used in the subsequent statistical mapping phase. 

We refer readers to section 1.2 ‘Background on feature 

selection’ of the Supplementary Material for further 

background on FS and the FS voting strategy.  

Feature mapping 

In the preceding steps we have computed 132 

characteristic patterns from the sustained vowel phonations, 

and subsequently applied FS techniques to obtain subsets of 

those features. Here, we aim to determine the functional 

relationship 𝑓(𝐗) = 𝐲, which maps the dysphonia measures 

𝐗 = (𝐱1 … 𝐱𝑀), where M is the number of features, to the 

outcome (response) y (motor-UPDRS and total-UPDRS in 

this study). That is, we want to obtain a classifier that will 

use the dysphonia measures to accurately predict UPDRS. 

There is a large literature on supervised classification, and 

we refer to Bishop [49], and Hastie et al. [50] for a broad 

overview of this area. Here, we experimented with three 

powerful classifiers: Random Forests (RF), Support Vector 

Machines (SVM), and eXtreme Gradient Boosting 

(XGBoost). For more specific background on these 

statistical learners please see section 1.3 ‘Background on 

statistical learners’ in the Supplementary Material. 

Model validation and generalization 

As in previous studies [9], [24], [26] we used 10-fold 

Cross Validation (CV) to assess the generalization 

performance of the statistical learners. Conceptually, CV 

provides an estimate of the accuracy with which UPDRS 

may be predicted on a new dataset, assuming the new dataset 

has similar statistical characteristics to the data used to train 

the classifier. Specifically, we split the initial dataset 

comprising 𝑁 (4010 for males and 1865 for females) 

phonations into a training (in sample) subset of 0.9 ∙ 𝑁 (3609 

and 1679) phonations and a testing (out of sample) subset of 

0.1 ∙ 𝑁 (401 and 186) phonations. For statistical confidence, 

the process was repeated a total of 100 times, randomly 

permuting the data each time before splitting into training 

and testing subsets. As in previous studies [9], [24], [25], 

[26], we used the Mean Absolute Error (MAE) to assess the 

model performance: 

 
MAE =

1

𝑁
∑ |�̂�𝑖 − 𝑦𝑖|

𝑖∈𝑄
 (1) 

where �̂�𝑖  is the predicted UPDRS and 𝑦𝑖  is the actual UPDRS 

for the ith entry in the training or testing subset, 𝑁 is the 

number of phonations in the training or testing subset, and Q 

contains the indices of that set. Errors over the 100 CV 

iterations were averaged. We also computed the Confidence 

Interval (CI) of the errors (using 95% confidence level). 

Finally, we also trained and assessed the model 

performance by using a validation scheme leaving samples 

out from a participant. Specifically, the data from the L-1 

participants (where L is the total number of subjects, 28 

males and 14 females for the models we build, respectively), 

the data from the first four weeks of the left-out participant 

were used for training, and the model performance was 

reported for the remaining five months. In addition to the 

dysphonia measures we presented RF with the UPDRS 

values during the first four weeks for the left-out participant 

(this would be known in practical setting in this tracking 

scenario and is implicitly a calibration approach). This model 

validation approach replicates the tracking setting where past 

data from the same subject in addition to the database built 

from the remaining L-1 participants are used to replicate 

future UPDRS scores for each of the participants. Errors for 

the weekly UPDRS scores were averaged. We did not 

include timing information, participants’ age, or participant 

identifiers as inputs into the statistical learners in order not 

to implicitly bias the statistical learning models. 

IV. RESULTS 

Prior to any analysis, it is useful to visually appreciate the 

variability of UPDRS within participants. Fig. 2 presents 

violin plots with the total-UPDRS variability for each 

participant in the study, stratifying the data by sex. We 

clarify that we used all weekly UPDRS estimates derived 

using linear interpolation to present here (rather only the 

three UPDRS clinical assessments per participant) because 

these are subsequently used as the ground truth for training 

and testing the statistical learners. We remark that for some 
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participants the UPDRS range is over 10 points (7.67 ± 4.12 

for males and 9.69 ± 4.22 for females). We computed 

Spearman correlation coefficients to quantify the strength of 

statistical association of the features with UPDRS, and 

compared these new association strengths to our previous 

findings [9] (see Tables I and II for comparisons of the 

correlation coefficients of indicative features with UPDRS 

for males and females, respectively). The results in these two 

tables illustrate the changes in the univariate statistical 

association of the features with UPDRS and implicitly 

demonstrate the effect the noise and the data transmission 

channel have in terms of using speech signals to replicate PD 

symptom severity. As expected, in most cases there are 

stronger statistical associations with the raw data; there are a 

few cases where the magnitude of the correlation coefficients 

appears slightly larger in the noisy data which can be 

attributed to statistical fluctuations. We have found that, as 

expected, the features in the present study had lower 

association strength with motor-UPDRS and total-UPDRS 

than in earlier studies that used full bandwidth speech [9]. 

Fig. 3 provides a succinct representation of the univariate 

association of each feature with total-UPDRS. Overall, 

univariate associations appear to be stronger for females, 

particularly for features which focus on F0 (jitter, GQ, F0-

related features). We report the out-of-sample accuracy 

(using RF) with which UPDRS can be predicted in 

Supplementary Material Table 1 for males, and 

Supplementary Material Table 2 for females. For each FS 

algorithm, the final number of features 𝐾 is determined using 

the one standard error rule [50]: adhering to the principle of 

 
 

 
 

Fig. 2.  Violin plots with the total-UPDRS variability within each of the 
28 male participants and 14 female participants in the study. The white 

dot in each violin indicates the median, the grey box represents the range 

for the 25th percentile (bottom) and 75th percentile (top) entries. The 

horizontal line indicates the mean value. 

  

 

TABLE II 

CORRELATION COEFFICIENTS OF FEATURES WITH TOTAL UPDRS IN 

FEMALES  (EXTRACTED FROM THE RAW DATA AND FROM THE NOISY DATA) 

Feature name 
Spearman correlation coefficient R 

Raw data Noisy data 

Jitter (abs 0th perturbation) 0.38 0.34 

Shimmer (abs differences) 0.33 0.25 

HNR -0.44 -0.44 

GNENSR,TKEO 0.12 0.12 

DFA -0.02 0.07 

PPE 0.40 0.39 

VFERSNR,SEO -0.18 -0.07 

Log energy -0.49 -0.53 

12th MFCC 0.26 0.04 

Std F0 0.32 0.31 

In all cases the features were statistically significantly (p<0.05) correlated 

with UPDRS. We present one indicative feature from each algorithmic 

family of dysphonia measures. 

TABLE I 
CORRELATION COEFFICIENTS OF FEATURES WITH TOTAL UPDRS IN MALES  

(EXTRACTED FROM THE RAW DATA AND FROM THE NOISY DATA) 

Feature name 
Spearman correlation coefficient R 

Raw data Noisy data 

Jitter (abs 0th perturbation) 0.12 0.12 

Shimmer (abs differences) -0.14 -0.02 

HNR -0.02 0.05 

GNENSR,TKEO 0.11 0.10 

DFA -0.21 -0.10 

PPE 0.03 0.05 

VFERNSR,entropy 0.19 0.16 

Log energy 0.17 0.03 

6th MFCC -0.29 -0.15 

Std F0 0.15 0.18 

In all cases the features were statistically significantly (p<0.05) correlated 
with UPDRS. We present one indicative feature from each algorithmic 

family of dysphonia measures. 
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parsimony, we fix 𝐾 to be the number of features where 

MAE is up to one standard deviation larger than the globally 

lowest MAE obtained with the feature subsets from that FS 

algorithm. The MAE for motor-UPDRS is 2.91 ± 0.23 

(CI=[2.49, 3.46]) for males and 2.38 ± 0.23 (CI=[2.19, 3.13]) 

for females, whilst the MAE for total-UPDRS is 3.43 ± 0.27 

(CI=[3.08, 4.11]) for males and 2.91 ± 0.27 (CI=[2.58, 3.54]) 

for females. The out-of-sample performances using SVMs 

and XGBoost are not presented because results were 

consistently worse compared to RF. 

The methodology was repeated contaminating the speech 

signals with AWGN or pink noise prior to speech coding and 

transmission. In both cases, the results were very similar 

(slight differences due to statistical fluctuation). By 

comparison, in a recent study in this application where high-

quality, high-bandwidth, uncompressed speech signals from 

the AHTD were used instead, the MAE reported for total-

UPDRS was [26]: 1.49 ± 0.14 for males, and 2.14 ± 0.25 for 

females. We defer further elaboration of those findings for 

the Discussion.  

Finally, for the model validation approach where we used 

the data from L-1 participants and only the first month of the 

data for each left-out participant to train the model and 

aiming to estimate their future total-UPDRS in the following 

5 months (UPDRS tracking), we obtained MAE 3.62 ± 2.25 

(CI=[2.83, 4.47]) for males and 4.74 ± 2.20 (CI=[3.67, 5.86]) 

for females.  

V. DISCUSSION 

We had previously demonstrated that using speech signals 

may be very promising in both (a) differentiating PD subjects 

from age- and gender-matched healthy controls [48], and (b) 

telemonitoring PD symptom severity by means of replicating 

the standard clinical scale UPDRS [9], [24], [25], [26]. In all 

those studies we had used high-quality speech signals, 

collected using high sampling frequency with minimal signal 

distortion (for example the signals were collected in a sound-

treated booth in [48]). In this study, we investigated the 

robustness of using lower quality signals which have been 

transmitted through the simulated GSM mobile telephone 

network. We found strong evidence that the existing GSM 

network, which to-date reaches more than 5 billion 

subscribers, enables clinically accurate UPDRS estimation. 

In Tsanas et al. [26], where the high-quality signals 

obtained from Intel’s AHTD were used, we reported that 

UPDRS could be estimated to within 1.5 UPDRS points for 

males and 2.2 UPDRS points for females; here we 

demonstrated that UPDRS can be estimated to within 

approximately 3.4 UPDRS points for males, and 2.9 UPDRS 

points for females (when comparing results against [26] 

where also 10-fold CV was used). We argue that this loss in 

accuracy of UPDRS, which is due to bandwidth restriction 

and/or channel transmission error is acceptable in practice 

because most PWP who could benefit from remote symptom 

tracking, are unlikely to have access to expensive, dedicated 

hardware such as the AHTD. We emphasize that the 

accuracy with which UPDRS is estimated even in this 

scenario of restricted quality speech, is less than the inter-

rater variability (difference in UPDRS score between two 

expert clinicians), which is about 4-5 points [57]. Putting our 

findings in the wider context: clinical colleagues had 

previously remarked that in their view our early 

investigations in 2010 towards replicating UPDRS using 

speech were insufficiently accurate to be widely deployed in 

clinical practice (the MAE in that study was 7.5 points) [24]. 

They had emphasized this technology would be practically 

very useful if we could demonstrate the MAE to be better 

than the inter-rater variability (i.e. less than 5 UPDRS 

points). This has been the informal threshold that we had 

used as guidance to deem whether our findings are 

practically ‘sufficiently good’. Therefore, speech over GSM 

remains clinically useful here, and could be used as a 

decision support tool to aid clinicians in remote, non-

invasive PD symptom severity assessment. Similarly, the 

automatic assessment of voice pathologies using signals 

transmitted over the public telephone network had been 

shown to be promising in related applications [28], [29].  

The topic of the appropriate methodology towards 

reporting out-of-sample performance is considerably more 

subtle than it first appears and has attracted some recent 

attention [58], [59]. The latter article contains discussion 

from three research groups weighing on the topic of how best 

to provide an estimate of generalization performance in 

clinical settings. We remark that the first guiding principle in 

deciding on the model validation scheme is how we envisage 

the deployed model will be subsequently used in practice 

(i.e. the intended usage should dictate the model validation 

approach). The argument is that standard CV may include 

confounding variables which could potentially overestimate 

performance because samples from the same subject end up 

in both the training and testing subsets [58]. In the debate 

appearing in [59] there is discussion and different opinions 

 
Fig. 3.  Visual representation of the feature correlations with total UPDRS. 

Features 1 to 30 are jitter variants, 31-51 shimmer variants, 51-60 HNR and 
GQ variants, 59-82 energy-related measures (RPDE, GNE, EMD-ER), 83-

124 MFCCs, 125-132 F0-related features.  
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on confounders and which approach should be used when 

aiming to develop a tool towards diagnosis. However, all 

three research teams essentially agree that standard leave-

subject-out methods underfit the data when it comes to 

tracking and endorse the use of validation methods where 

samples from the same subject are used in both training and 

testing sets. In particular, Varoquaux recommends only 

using samples from the subject’s past to estimate future 

entries in this tracking setting [59]. We emphasize that the 

problem investigated in this study comes under the broad 

area described as tracking in the studies above [58], [59]. 

Motivated by these points, we have introduced a model 

validation approach where we used data from the first 4 

weeks of a participant in the training set (in addition to the 

data from all other L-1 participants), and tested the 

performance on the remaining five months for the left-out 

participant. We demonstrated that also in this case we have 

relatively accurate results (MAE for total-UPDRS is 3.72 ± 

2.29 for males and 4.86 ± 2.42 for females). The MAE is 

lower in males, likely reflecting the lower average individual 

UPDRS variability observed in Fig. 2. From a practical 

perspective, this model validation approach we used here is 

directly comparable to a tracking paradigm that records some 

phonations and obtains the UPDRS clinical assessments by 

an expert neurologist for a specific participant before 

deploying the tool for longer-term UPDRS tracking. 

In a related earlier study, Bayestehtashk et al. enrolled 168 

PD participants and focused on replicating motor-UPDRS 

using sustained vowels /ah/, a diadochokinetic task, and a 

reading task (using standardized, linguistically rich text) 

[60]. They reported a MAE of 5.5 motor-UPDRS points. To 

the best of our knowledge, this is the only study by a different 

research group that used speech to replicate symptom 

severity as expressed using UPDRS and quantitatively 

expressed performance using some error metric.   

Concurring with previous findings, we have found that a 

parsimonious speech feature subset actually improves the 

out-of-sample MAE, and is also more amenable to 

interpretation [9], [24], [26]. We experimented with different 

statistical learners aiming to improve the out of sample 

performance. In addition to RF, we explored SVMs (linear 

SVM, polynomial SVM), and XGBoost (both in regression 

and classification mode), exploring different configurations 

and optimization of their internal hyper-parameters (results 

not shown). The radial basis function SVM was considerably 

better than linear SVM and generally better than the 

polynomial SVM. RF outperformed SVMs and XGBoost 

consistently and significantly (p<0.001), although we cannot 

provide a clear theoretical justification for this finding. More 

detailed empirical and theoretical analysis is required to 

understand which classification algorithm is likely to lead to 

more accurate prediction for similar datasets [35]. 

The UPDRS scores used as the response variable in our 

investigations have different class membership, i.e. this is an 

unbalanced multi-class classification statistical learning 

setting, which is known to be challenging in practice. There 

are different strategies to cope with the class unbalance 

problem including (a) using different weights internally in 

the classifier for the samples belonging to different classes 

(as a function of sample domination in the training data in 

each iteration, where under-represented classes are up-

weighted), and (b) using different probabilistic cut-offs for 

the different classes (again, these can be set to be inversely 

proportional to class dominance). We stress that these 

adaptive thresholds should only use information from the 

training dataset (similarly, in a CV application these need to 

be recomputed accordingly using only the information 

available in the training of the classifier). We have explored 

both approaches to train different RF models, however 

neither led to improving the out of sample performance 

(detailed results not shown). There is a more sophisticated 

approach to tackle class unbalance in statistical learning, by 

generating new (artificial) data points, e.g. using techniques 

such as the Synthetic Minority Over-sampling Technique 

(SMOTE) [61] and Adaptive Synthetic Sampling 

(ADASYN) [62]. Then, we can explore using the augmented 

dataset (comprising both the original and artificial data)  in 

the statistical learning process. Again, there are different 

strategies within data generation, e.g. to ensure all classes 

have equal membership (completely balanced dataset), or 

ensuring there is no clear dominance of particular class(es) 

in order not to contaminate the data with a very large number 

of artificial samples. We had not explored these data 

generation approaches here because it would diverge from 

the main focus of the study, however it would be an 

interesting direction to pursue in further work. 

We used four FS algorithms and applied a voting 

mechanism approach across perturbed versions of the dataset 

(see Supplementary Material for details, including the 

discussion therein on FS strategies) to identify features 

which are jointly most predictive of UPDRS. The use of 

perturbed versions of the data enables the investigation of 

consistency within each FS algorithm, and the use of 

different FS algorithms provides insight into FS consistency 

across FS algorithms. The non-classical dysphonia measures 

(mainly IMFNSR,SEO, VFER) and MFCCs are consistently 

selected as the most predictive features by RELIEF and RF 

feature importance (which appear to lead to the lowest MAE, 

see Supplementary Material Tables 1 and 2). The selection 

of MFCCs is very consistent across all FS algorithms. These 

results reinforce previous findings suggesting that dysphonia 

measures focusing on energy aspects may be promising for 

vocal pathology assessment [35], [48]. Similarly to previous 

studies [9], [26], [35], the features selected are gender-

dependent and focus on different pathological effects in 

PWP’s voice. This finding supports the tentative 

physiological suggestion that the underlying processes of 

degradation in PD speech may be different in men and 

women [9], [35]. For females the selected features are mainly 

log energy, low MFCCs and F0 related measures; for males 

they are DFA, IMFSNR,SEO, VFERNSR,entropy, and mid-range 

MFCCs. Overall, the most promising characteristic in PD 

speech pathology for males appears to be working with 

energy in the higher energy bands: quantifying stochastic 
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turbulent noise (DFA), excitation of different frequency 

bands and turbulent noise in vocal fold cycles (VFER), and 

ratio of high frequency (>2.5 kHz, denoting ‘noise’ in the 

signal) over low frequency (<2.5 kHz) energy (IMF). For 

females, the most promising characteristic in PD speech 

pathology appears to be the signal energy (log energy, 0th 

MFCC). Interestingly, some dysphonia measures that rely on 

F0 may also provide clinical information for females but not 

for males. As we argued previously [9], [35], this finding 

may be because natural male voices have considerably more 

vibrato (physiological tremor) compared to female voices. 

Given that females have higher F0 on average [27], and that 

higher F0 is normally associated with lower F0 variability 

[42], F0 perturbations might reflect voice pathology in 

females whilst similar distortions in males’ vocal 

performance could be, at least partly, attributed to normal 

vibrato. This is likely the same underlying reason why log 

energy is very strongly associated with UPDRS in females 

(R=-0.53) but poorly associated with UPDRS in males: log 

energy captures the main ‘power’ in the signal which is 

primarily driven by the contribution of the lungs and vocal 

folds (as the source of the recorded signal, considering the 

basic source-filter model of the vocal production mechanism 

[27]). It is possible that the vocal folds in PD might be more 

strongly affected in females compared to males, and also 

normal vibrato in males might be masking underlying F0 

perturbations (which in female voices may more clearly 

indicate underlying pathology) [35]. Incidentally, the 

negative correlation of log energy with UPDRS verifies what 

is intuitively expected: reduced log energy corresponds to 

reduced loudness (which is well reported in PD [13]) and 

may be used as a marker of symptom severity. 

MFCCs have been widely used in speech applications and 

have been previously shown to perform very well in related 

biomedical applications, e.g. [47]. This study further 

supports their use as powerful features in PD monitoring, as 

evidenced in the FS findings reported in Supplementary 

Material Tables 1 and 2. Although MFCCs are well-founded 

from a speech signal processing perspective, their 

physiological interpretation is more challenging. The lower 

MFCCs reflect the amplitude and envelope spectral 

fluctuations, and higher MFCCs convey mainly information 

about harmonic components; mid-range MFCCs are not 

easily interpretable. 

We had previously reported that the VFER family of 

dysphonia measures is amongst the best approaches to 

quantify information in speech signals to estimate UPDRS 

for males [35], [9]. Although VFER measures were still 

selected here by all FS algorithms, they do not appear near 

the top of RELIEF and RF feature importance. This may be 

because VFER relies on quantifying the information in the 

high frequencies (>2.5 kHz) as ‘noise’; however due to the 

reduced bandwidth when using a sampling rate of 8 kHz 

much of this high-frequency information is lost. This would 

suggest that the effectiveness of VFER relies on using high 

sampling rates (>20 kHz), in order to accurately quantify the 

extent of high frequency noise in the signal. In general, 

young adult pathology-free voices may be harmonically 

efficient up to about 6 kHz; therefore the suggested threshold 

of 2.5 kHz for denoting ‘noise’ may require further 

clarification. This empirical finding was reported in Tsanas 

et al. [9], considering frequencies below 2.5 kHz to denote 

‘signal’ and frequencies above 2.5 kHz to denote ‘noise’: the 

threshold was optimized scanning frequencies (using steps 

of 500 Hz similarly to Michaelis et al. [45]) in order to 

determine UPDRS. Interestingly, broadly similar findings 

regarding the threshold of ‘signal’ and ‘noise’ have been 

described by other research groups. For example, Gomez-

Vilda et al. [63] indicated that frequencies above 2 kHz can 

be generally considered turbulent noise. Likewise, the Multi-

Dimensional Voice Program (MDVP - 

http://www.kayelemetrics.com/) program includes “Voice 

Turbulence Index”, which is an alternative dysphonia 

measure relying on the SNR concept, where the spectral 

energy above 2.8 kHz is used to denote the high frequency 

energy component in the speech signal [64]. Overall, we 

tentatively suggest that the empirical 2.5 kHz threshold may 

have a solid physiological justification which is reflected 

broadly in the findings of different researchers: most of the 

energy in the sustained vowels is up to the second formant, 

and the second formant can be up to about 1.7 kHz for the 

sustained vowel /ah:/ [27].  

One very interesting new finding in this study is that 

UPDRS estimation in males deteriorates considerably more 

compared to UPDRS estimation in females as a result of the 

lower quality speech signals. This may be related to the 

bandwidth restriction, but may also be a consequence of the 

finite bit allocation available to reproducing the pitch period 

with pitch pulses. It could also be due to the increased noise 

that is masked by the formants in the perceptually-weighted 

linear prediction: this noise may not be heard, but may, 

nonetheless, be important in PD. 

The future of health telemonitoring is linked to the 

potential of smartphones and associated apps. A promising 

development in that direction would be the deployment of a 

smartphone app that can record high-quality (wide-band and 

low-distortion) speech signals. This further underlines the 

generalization potential of using speech signals towards 

future PD symptom monitoring systems. Nevertheless, there 

are still many people (particularly elderly, who are the main 

beneficiaries of the proposed technology) that do not own or 

do not know how to operate a smartphone. Although it is 

conceivable this might change in the next 10-20 years as 

smartphones are becoming more affordable and the current 

generation of 50-60 year-old people are generally better 

adapted to the use of smartphones, we envisage the proposed 

technology here with standard mobile telephony may remain 

pertinent because of its simplicity in use. 

Our findings confirm the established view in the clinical 

speech community suggesting that speech signals of at least 

20 kHz should be preferred in clinical applications because 

there is useful information in the higher frequencies of the 

spectrum [27]. Nevertheless, the performance degradation as 

a result of the use of the lower-quality GSM coding and 

http://www.kayelemetrics.com/
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communication framework is unlikely to be prohibitive for 

clinically useful UPDRS prediction. We conjecture that this 

may also be the case for other voice pathologies. We 

hypothesize that the speech community may have, hitherto, 

been overly pessimistic in the need for very high-quality 

speech signals [27] in clinical speech science. 

We stress that the results reported in this study were 

obtained in a simulated digital communications framework 

involving the GSM standard. Additional tests in real-world 

contexts using actual mobile phones would be required to 

validate the robustness of the presented methodology. For 

example, in practice the channel may or may not always 

introduce additive white Gaussian noise, although this is 

generally the assumption in the digital communication 

literature [40], [41]. Also, we have not simulated the effect 

of drop-outs due to cell handoff, or switching between 

2G/3G, or quality reduction due to the user not placing the 

phone close to their mouth. For this reason, our channel is 

chosen to be extremely noisy which introduces quite severe 

speech signal quality degradation. Additional factors that are 

hard to control, such as the mobile phone’s microphone, 

might need to be taken into account in a real application. 

Ideally, the microphone should exhibit uniform frequency 

response over the frequencies of interest (50 Hz – 10 kHz) to 

minimize spectral distortion. Similarly, microphones with 

reasonable SNR (>50 dB) may be required to ensure 

sufficient recording quality. Most commercially available 

microphones embedded in mobile phones adhere to these 

requirements. A detailed comparison of different 

microphones would reveal the extent to which speech signals 

are affected, and whether additional processing is necessary 

for signals recorded using mobile phones. Similarly, we have 

not pursued a full-scale simulation of different SNR and 

communication channels because this would involve 

reporting error rates and repeating the entire process with 

feature extraction, selection, and statistical mapping for 

different simulation scenarios. Instead we chose a moderate 

SNR (10dB) and a particularly hostile environment with the 

Proakis C channel which is frequently used in the literature 

to assess the performance of simulated digital 

communication approaches [40]. Therefore, we are 

reasonably confident that this study reports findings on a 

very challenging simulated digital communications 

environment. 

It is not straightforward to test the proposed methodology 

in practice: this would involve building the receiver block 

and ideally testing (a) several types of commercially 

available microphones and analogue-to-digital conversion 

hardware, and also (b) the reception of signals in various 

realistic scenarios (e.g. in a rural, urban, or hilly 

environment), which would probably introduce additional 

distortion to the transmitted signal. Other scenarios to test 

include cell handover. Development engineers would need 

to test the proposed methodology in such diverse practical 

settings in future work. As we reported recently through a 

systematic review, there are relatively few paradigms where 

research findings are translated into digital health 

interventions to benefit patients [65]. The promising findings 

presented in this study and the reported results by other 

colleagues provide compelling evidence to suggest this is a 

sufficiently mature field to merit detailed testing in a new 

study that will explore all these different practical 

challenges. 

The research area of speech signal processing and PD has 

generated considerable interest in the scientific community 

in the last 10-15 years and has led to some recent exciting 

developments. For example, there has been consistent 

interest in the binary differentiation of PD from healthy 

controls [48], [66], [67] amongst different research teams, 

which has generally led to very successful outcomes. We 

have recently reported on our findings in the Parkinson’s 

Voice Initiative (PVI), a large international study where we 

had collected more than 19,000 sustained vowel /a/ 

phonations across seven countries [30]. The PVI phonations 

were collected under acoustically non-controlled conditions 

over the phone with the explicit aim of investigating large 

scale population screening towards PD assessment using 

telephone-quality speech. We had demonstrated clinically 

meaningful differentiation of PWP versus controls, thus 

highlighting the potential of this technology at scale. 

Recently, researchers have started exploring speech data 

from different corpora which may lead to new insights across 

PD populations with different linguistic backgrounds [30], 

[68]. Furthermore, some studies have investigated different 

speech tasks for PD evaluations [60], [68], although it is still 

early to decide whether any particular task is clearly better 

that competing approaches. Another area of recent interest is 

in terms of associating acoustic features with clinical 

interventions, e.g. with pharmacological treatment (L-dopa) 

[69] and deep brain stimulation [70]. Collectively, these 

studies highlight the enormous potential of speech signal 

analysis in diverse PD areas. Moreover, we are currently 

collecting longitudinal data (including speech) from a large 

number of people at risk of PD, aiming to retrospectively 

revisit data from those people who are subsequently 

clinically diagnosed with PD. This would help us potentially 

develop a tool towards PD prognosis. 

Telemonitoring in healthcare has received considerable 

attention lately, but global adoption is always constrained by 

the prohibitive costs associated with specialized 

telemonitoring hardware or equipment. Indicative recent 

explorative applications in the PD domain include the mPower 

study using iPhones to record a series of motor and cognitive 

tasks [71], and other studies relying on the capabilities of 

smartphones [72], [73], and wearables [74], which are not 

necessarily affordable and accessible to elderly PD patients 

leaving in rural areas. The exploration of highly cost-effective 

solutions, such as exploitation of existing cellular or PSTN 

telephone networks investigated in this study may be a critical 

step towards more widespread diffusion of this promising 

technology. We envisage the results of this study being a first 

step towards practical, affordable, and accurate telemonitoring 

of PD for the population at large. 
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