26,360 research outputs found
Phonon-mediated tuning of instabilities in the Hubbard model at half-filling
We obtain the phase diagram of the half-filled two-dimensional Hubbard model
on a square lattice in the presence of Einstein phonons. We find that the
interplay between the instantaneous electron-electron repulsion and
electron-phonon interaction leads to new phases. In particular, a
d-wave superconducting phase emerges when both anisotropic phonons
and repulsive Hubbard interaction are present. For large electron-phonon
couplings, charge-density-wave and s-wave superconducting regions also appear
in the phase diagram, and the widths of these regions are strongly dependent on
the phonon frequency, indicating that retardation effects play an important
role. Since at half-filling the Fermi surface is nested, spin-density-wave is
recovered when the repulsive interaction dominates. We employ a functional
multiscale renormalization-group method that includes both electron-electron
and electron-phonon interactions, and take retardation effects fully into
account.Comment: 8 pages, 5 figure
Weak dipole moment of in collisions with longitudinally polarized electrons
It is pointed out that certain CP-odd momentum correlations in the production
and subsequent decay of tau pairs in collisions get enhanced when the
is longitudinally polarized. Analytic expressions for these correlations
are obtained for the single-pion decay mode of when have
a ``weak" dipole form factor (WDFF) coupling to . For collisions
at the peak, a sensitivity of about 1-5\mbox{ cm} for
the WDFF can be reached using a {\em single} decay
channel, with 's likely to be available at the SLC at Stanford with
polarization of 62\%-75\%.Comment: 9 pages, Latex, PRL-TH-93/17 (Revised
An easy-to-use diagnostic system development shell
The Diagnostic System Development Shell (DSDS), an expert system development shell for diagnostic systems, is described. The major objective of building the DSDS is to create a very easy to use and friendly environment for knowledge engineers and end-users. The DSDS is written in OPS5 and CommonLisp. It runs on a VAX/VMS system. A set of domain independent, generalized rules is built in the DSDS, so the users need not be concerned about building the rules. The facts are explicitly represented in a unified format. A powerful check facility which helps the user to check the errors in the created knowledge bases is provided. A judgement facility and other useful facilities are also available. A diagnostic system based on the DSDS system is question driven and can call or be called by other knowledge based systems written in OPS5 and CommonLisp. A prototype diagnostic system for diagnosing a Philips constant potential X-ray system has been built using the DSDS
Infrared probe of the anomalous magnetotransport of highly oriented pyrolytic graphite in the extreme quantum limit
We present a systematic investigation of the magnetoreflectance of highly
oriented pyrolytic graphite in magnetic field B up to 18 T . From these
measurements, we report the determination of lifetimes tau associated with the
lowest Landau levels in the quantum limit. We find a linear field dependence
for inverse lifetime 1/tau(B) of the lowest Landau levels, which is consistent
with the hypothesis of a three-dimensional (3D) to 1D crossover in an
anisotropic 3D metal in the quantum limit. This enigmatic result uncovers the
origin of the anomalous linear in-plane magnetoresistance observed both in bulk
graphite and recently in mesoscopic graphite samples
Measurement of the electric dipole moment using longitudinal polarization of beams
Certain CP-odd momentum correlations in the production and subsequent decay
of pairs in collisions are enhanced significantly when the
and beams are longitudinally polarized. These may be used to probe
the real and imaginary parts of , the electric dipole moment of
the . Closed-form expressions for these ``vector correlations'' and the
standard deviation of the operators defining them due to standard model
interactions are presented for the two-body final states of decays. If
42\% average polarization of each beam is achieved, as proposed for the
tau-charm factories, with equal integrated luminosities for each sign of
polarization and a total yield of pairs, it is
possible to attain sensitivities for of , , cm respectively and for of , , cm respectively at the three operating center-of-mass energies of
3.67, 4.25 and 10.58 GeV. These bounds emerge when the effects of a posible
weak dipole form factor are negligible as is the case when it is of
the same order of magnitude as . Furthermore, in such a
polarization experiment where different polarizations are possible, a
model-independent disentangling of their individual effects is possible, and a
technique to achieve this is described. A strong longitudinal polarization
physics programme at the tau-charm factory appears warranted.Comment: 30 pages, latex, no figure
Many-Body Effects on Tunneling of Electrons in Magnetic-Field-Induced Quasi One-Dimensional Electron Systems in Semiconductor Nanowhiskers
Effects of the electron-electron interaction on tunneling in a semiconductor
nanowhisker are studied in a magnetic quantum limit. We consider the system
with which bulk and edge states coexist. In bulk states, the temperature
dependence of the transmission probability is qualitatively similar to that of
a one-dimensional electron system. We investigate contributions of edge states
on transmission probability in bulk states. Those contributions can be
neglected within our approximation which takes into account only most divergent
terms at low temperatures.Comment: 9 pages, 6 figure
Renormalization Group Approach to Strong-Coupled Superconductors
We develop an asymptotically exact renormalization group (RG) approach that
treats electron-electron and electron-phonon interactions on equal footing. The
approach allows an unbiased study of the instabilities of Fermi liquids without
the assumption of a broken symmetry. We apply our method to the problem of
strongly coupled superconductors and find the temperature T* below which the
high-temperature Fermi liquid state becomes unstable towards Cooper pairing. We
show that T* is the same as the critical temperature Tc obtained in
Eliashberg's strong coupling theory starting from the low-temperature
superconducting phase. We also show that Migdal's theorem is implicit in our
approach. Finally, our results lead to a novel way to calculate numerically,
from microscopic parameters, the transition temperature of superconductors.Comment: 6 pages, 3 figures, expanded presentation, final versio
Comparison of QG-Induced Dispersion with Standard Physics Effects
One of the predictions of quantum gravity phenomenology is that, in
situations where Planck-scale physics and the notion of a quantum spacetime are
relevant, field propagation will be described by a modified set of laws.
Descriptions of the underlying mechanism differ from model to model, but a
general feature is that electromagnetic waves will have non-trivial dispersion
relations. A physical phenomenon that offers the possibility of experimentally
testing these ideas in the foreseeable future is the propagation of high-energy
gamma rays from GRB's at cosmological distances. With the observation of
non-standard dispersion relations within experimental reach, it is thus
important to find out whether there are competing effects that could either
mask or be mistaken for this one. In this letter, we consider possible effects
from standard physics, due to electromagnetic interactions, classical as well
as quantum, and coupling to classical geometry. Our results indicate that, for
currently observed gamma-ray energies and estimates of cosmological parameter
values, those effects are much smaller than the quantum gravity one if the
latter is first-order in the energy; some corrections are comparable in
magnitude with the second-order quantum gravity ones, but they have a very
different energy dependence.Comment: 8 pages; Version to be published in CQG as a letter; Includes some
new comments and references, but no changes in the result
Millisecond accuracy video display using OpenGL under Linux
To measure people’s reaction times to the nearest millisecond, it is necessary to know exactly when
a stimulus is displayed. This article describes how to display stimuli with millisecond accuracy on a
normal CRT monitor, using a PC running Linux. A simple C program is presented to illustrate how this
may be done within X Windows using the OpenGL rendering system. A test of this system is reported
that demonstrates that stimuli may be consistently displayed with millisecond accuracy. An algorithm
is presented that allows the exact time of stimulus presentation to be deduced, even if there are relatively
large errors in measuring the display time
Metal-Insulator-Like Behavior in Semimetallic Bismuth and Graphite
When high quality bismuth or graphite crystals are placed in a magnetic field
directed along the c-axis (trigonal axis for bismuth) and the temperature is
lowered, the resistance increases as it does in an insulator but then
saturates. We show that the combination of unusual features specific to
semimetals, i.e., low carrier density, small effective mass, high purity, and
an equal number of electrons and holes (compensation), gives rise to a unique
ordering and spacing of three characteristic energy scales, which not only is
specific to semimetals but which concomitantly provides a wide window for the
observation of apparent field induced metal-insulator behavior. Using
magnetotransport and Hall measurements, the details of this unusual behavior
are captured with a conventional multi-band model, thus confirming the
occupation by semimetals of a unique niche between conventional metals and
semiconductors.Comment: 4 pages, 4 figs, data and discussion on bismuth added, final
published versio
- …
