25 research outputs found
Evidence that Meningeal Mast Cells Can Worsen Stroke Pathology in Mice
Stroke is the leading cause of adult disability and the fourth most common cause of death in the United States. Inflammation is thought to play an important role in stroke pathology, but the factors that promote inflammation in this setting remain to be fully defined. An understudied but important factor is the role of meningeal-located immune cells in modulating brain pathology. Although different immune cells traffic through meningeal vessels en route to the brain, mature mast cells do not circulate but are resident in the meninges. With the use of genetic and cell transfer approaches in mice, we identified evidence that meningeal mast cells can importantly contribute to the key features of stroke pathology, including infiltration of granulocytes and activated macrophages, brain swelling, and infarct size. We also obtained evidence that two mast cell-derived products, interleukin-6 and, to a lesser extent, chemokine (C-C motif) ligand 7, can contribute to stroke pathology. These findings indicate a novel role for mast cells in the meninges, the membranes that envelop the brain, as potential gatekeepers for modulating brain inflammation and pathology after stroke
Mast cell chymase reduces the toxicity of Gila monster venom, scorpion venom, and vasoactive intestinal polypeptide in mice
Mast cell degranulation is important in the pathogenesis of anaphylaxis and allergic disorders. Many animal venoms contain components that can induce mast cell degranulation, and this has been thought to contribute to the pathology and mortality caused by envenomation. However, we recently reported evidence that mast cells can enhance the resistance of mice to the venoms of certain snakes and that mouse mast cell-derived carboxypeptidase A3 (CPA3) can contribute to this effect. Here, we investigated whether mast cells can enhance resistance to the venom of the Gila monster, a toxic component of that venom (helodermin), and the structurally similar mammalian peptide, vasoactive intestinal polypeptide (VIP). Using 2 types of mast cell-deficient mice, as well as mice selectively lacking CPA3 activity or the chymase mouse mast cell protease-4 (MCPT4), we found that mast cells and MCPT4, which can degrade helodermin, can enhance host resistance to the toxicity of Gila monster venom. Mast cells and MCPT4 also can limit the toxicity associated with high concentrations of VIP and can reduce the morbidity and mortality induced by venoms from 2 species of scorpions. Our findings support the notion that mast cells can enhance innate defense by degradation of diverse animal toxins and that release of MCPT4, in addition to CPA3, can contribute to this mast cell function.status: publishe
IgE-mediated mast cell activation promotes inflammation and cartilage destruction in osteoarthritis
Osteoarthritis is characterized by articular cartilage breakdown, and emerging evidence suggests that dysregulated innate immunity is likely involved. Here, we performed proteomic, transcriptomic, and electron microscopic analyses to demonstrate that mast cells are aberrantly activated in human and murine osteoarthritic joint tissues. Using genetic models of mast cell deficiency, we demonstrate that lack of mast cells attenuates osteoarthritis in mice. Using genetic and pharmacologic approaches, we show that the IgE/Fc\u3b5RI/Syk signaling axis is critical for the development of osteoarthritis. We find that mast cell-derived tryptase induces inflammation, chondrocyte apoptosis, and cartilage breakdown. Our findings demonstrate a central role for IgE-dependent mast cell activation in the pathogenesis of osteoarthritis, suggesting that targeting mast cells could provide therapeutic benefit in human osteoarthritis
Mast Cell-Derived TNF Can Exacerbate Mortality during Severe Bacterial Infections in C57BL/6-KitW-sh/W-sh Mice
We used mast cell-engrafted genetically mast cell-deficient C57BL/6-KitW-sh/W-sh mice to investigate the roles of mast cells and mast cell-derived tumor necrosis factor in two models of severe bacterial infection. In these mice, we confirmed findings derived from studies of mast cell-deficient WBB6F1-KitW/W-v mice indicating that mast cells can promote survival in cecal ligation and puncture (CLP) of moderate severity. However, we found that the beneficial role of mast cells in this setting can occur independently of mast cell-derived tumor necrosis factor. By contrast, using mast cell-engrafted C57BL/6-KitW-sh/W-sh mice, we found that mast cell-derived tumor necrosis factor can increase mortality during severe CLP and can also enhance bacterial growth and hasten death after intraperitoneal inoculation of Salmonella typhimurium. In WBB6F1-KitW-sh/W-sh mice, mast cells enhanced survival during moderately severe CLP but did not significantly change the survival observed in severe CLP. Our findings in three types of genetically mast cell-deficient mice thus support the hypothesis that, depending on the circumstances (including mouse strain background, the nature of the mutation resulting in a mast cell deficiency, and type and severity of infection), mast cells can have either no detectable effect or opposite effects on survival during bacterial infections, eg, promoting survival during moderately severe CLP associated with low mortality but, in C57BL/6-KitW-sh/W-sh mice, increasing mortality during severe CLP or infection with S. typhimurium