383 research outputs found

    Virus-Free CRISPR CAR T cells induce solid tumor regression

    Get PDF
    Chimeric antigen receptor (CAR) T cell therapy has shown promising efficacy in treating hematologic malignancies and has led to the FDA-approval of three CAR T cell products. However, there has been little success in treating solid tumors, as clinical trials to date have yielded little to no responses and no improvement in survival. Current methods of CAR T cell production typically involve the use of viral vectors which can give rise to complications such as insertional mutagenesis, leading to gene silencing or oncogene activation. In addition, GMP-grade viral vector manufacturing can be expensive with lengthy wait times for new batches. Here we have developed a virus-free strategy in primary T cells that has eliminated the use of viral vectors through the use of CRISPR-Cas9 to precisely edit the chimeric antigen receptor into the TRAC gene1. Our method of virus free production begins through the generation of a double stranded DNA (dsDNA) template produced by polymerase chain reaction (PCR). This template is then combined with a SpCas9-single guide RNA to create a ribonucleoprotein (RNP) complex. Isolated human primary T cells from adult healthy donors are then nucleofected with the RNP and dsDNA template on day 2 of ex vivo expansion. Flow cytometry is then utilized to immunophenotype the cell product and analyze the percent of efficiency of CAR gene transfer. Within the cell product, the editing efficiencies are \u3e95% TCR knockout and 35% CAR+. Transcriptional profiling indicates that the virus-free CART cells have a favorable memory-like phenotype. In addition to our in vitro work, in vivo mice studies with anti-GD2 CART products demonstrate regression of GD2+ solid tumors upon virus-free CART treatment, showing similar potency and survival to viral-produced CAR T cells. The production of virus-free CAR T cells has high potential to enable the rapid and flexible manufacturing of highly defined and highly potent CAR T cell products for the treatment of solid tumors. 1 Mueller, K. et al. CRISPR-mediated insertion of a chimeric antigen receptor produces nonviral T cell products capable of inducing solid tumor regression. bioRxiv preprint doi: https://doi.org/10.1101/2021.08.06.455489 (2021)

    Virus-Free CRISPR CAR T cells induce solid tumor regression

    Get PDF
    Chimeric antigen receptor (CAR) T cell therapy has shown promising efficacy in treating hematologic malignancies and has led to the FDA-approval of three CAR T cell products. However, there has been little success in treating solid tumors, as clinical trials to date have yielded little to no responses and no improvement in survival. Current methods of CAR T cell production typically involve the use of viral vectors which can give rise to complications such as insertional mutagenesis, leading to gene silencing or oncogene activation. In addition, GMP-grade viral vector manufacturing can be expensive with lengthy wait times for new batches. Here we have developed a virus-free strategy in primary T cells that has eliminated the use of viral vectors through the use of CRISPR-Cas9 to precisely edit the chimeric antigen receptor into the TRAC gene1. Our method of virus free production begins through the generation of a double stranded DNA (dsDNA) template produced by polymerase chain reaction (PCR). This template is then combined with a SpCas9-single guide RNA to create a ribonucleoprotein (RNP) complex. Isolated human primary T cells from adult healthy donors are then nucleofected with the RNP and dsDNA template on day 2 of ex vivo expansion. Flow cytometry is then utilized to immunophenotype the cell product and analyze the percent of efficiency of CAR gene transfer. Within the cell product, the editing efficiencies are \u3e95% TCR knockout and 35% CAR+. Transcriptional profiling indicates that the virus-free CART cells have a favorable memory-like phenotype. In addition to our in vitro work, in vivo mice studies with anti-GD2 CART products demonstrate regression of GD2+ solid tumors upon virus-free CART treatment, showing similar potency and survival to viral-produced CAR T cells. The production of virus-free CAR T cells has high potential to enable the rapid and flexible manufacturing of highly defined and highly potent CAR T cell products for the treatment of solid tumors. 1 Mueller, K. et al. CRISPR-mediated insertion of a chimeric antigen receptor produces nonviral T cell products capable of inducing solid tumor regression. bioRxiv preprint doi: https://doi.org/10.1101/2021.08.06.455489 (2021)

    Early social distancing policies in Europe, changes in mobility & COVID-19 case trajectories: insights from Spring 2020

    Get PDF
    Background Social distancing have been widely used to mitigate community spread of SARS-CoV-2. We sought to quantify the impact of COVID-19 social distancing policies across 27 European counties in spring 2020 on population mobility and the subsequent trajectory of disease. Methods We obtained data on national social distancing policies from the Oxford COVID-19 Government Response Tracker and aggregated and anonymized mobility data from Google. We used a pre-post comparison and two linear mixed-effects models to first assess the relationship between implementation of national policies and observed changes in mobility, and then to assess the relationship between changes in mobility and rates of COVID-19 infections in subsequent weeks. Results Compared to a pre-COVID baseline, Spain saw the largest decrease in aggregate population mobility (~70%), as measured by the time spent away from residence, while Sweden saw the smallest decrease (~20%). The largest declines in mobility were associated with mandatory stay-at-home orders, followed by mandatory workplace closures, school closures, and non-mandatory workplace closures. While mandatory shelter-in-place orders were associated with 16.7% less mobility (95% CI: -23.7% to -9.7%), non-mandatory orders were only associated with an 8.4% decrease (95% CI: -14.9% to -1.8%). Large-gathering bans were associated with the smallest change in mobility compared with other policy types. Changes in mobility were in turn associated with changes in COVID-19 case growth. For example, a 10% decrease in time spent away from places of residence was associated with 11.8% (95% CI: 3.8%, 19.1%) fewer new COVID-19 cases. Discussion This comprehensive evaluation across Europe suggests that mandatory stay-at-home orders and workplace closures had the largest impacts on population mobility and subsequent COVID-19 cases at the onset of the pandemic. With a better understanding of policies’ relative performance, countries can more effectively invest in, and target, early nonpharmacological interventions

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Apolipoprotein C3 Polymorphisms, Cognitive Function and Diabetes in Caribbean Origin Hispanics

    Get PDF
    Apolipoprotein C3 (APOC3) modulates triglyceride metabolism through inhibition of lipoprotein lipase, but is itself regulated by insulin, so that APOC3 represents a potential mechanism by which glucose metabolism may affect lipid metabolism. Unfavorable lipoprotein profiles and impaired glucose metabolism are linked to cognitive decline, and all three conditions may decrease lifespan. Associations between apolipoprotein C3 (APOC3) gene polymorphisms and impaired lipid and glucose metabolism are well-established, but potential connections between APOC3 polymorphisms, cognitive decline and diabetes deserve further attention.We examined whether APOC3 single nucleotide polymorphisms (SNPs) m482 (rs2854117) and 3u386 (rs5128) were related to cognitive measures, whether the associations between cognitive differences and genotype were related to metabolic differences, and how diabetes status affected these associations. Study subjects were Hispanics of Caribbean origin (n = 991, aged 45-74) living in the Boston metropolitan area.Cognitive and metabolic measures differed substantially by type II diabetes status. In multivariate regression models, APOC3 m482 AA subjects with diabetes exhibited lower executive function (P = 0.009), Stroop color naming score (P = 0.014) and Stroop color-word score (P = 0.022) compared to AG/GG subjects. APOC3 m482 AA subjects with diabetes exhibited significantly higher glucose (P = 0.032) and total cholesterol (P = 0.028) compared to AG/GG subjects. APOC3 3u386 GC/GG subjects with diabetes exhibited significantly higher triglyceride (P = 0.004), total cholesterol (P = 0.003) and glucose (P = 0.016) compared to CC subjects.In summary, we identified significant associations between APOC3 polymorphisms, impaired cognition and metabolic dysregulation in Caribbean Hispanics with diabetes. Further research investigating these relationships in other populations is warranted

    Objective comparison of particle tracking methods

    Get PDF
    Particle tracking is of key importance for quantitative analysis of intracellular dynamic processes from time-lapse microscopy image data. Because manually detecting and following large numbers of individual particles is not feasible, automated computational methods have been developed for these tasks by many groups. Aiming to perform an objective comparison of methods, we gathered the community and organized an open competition in which participating teams applied their own methods independently to a commonly defined data set including diverse scenarios. Performance was assessed using commonly defined measures. Although no single method performed best across all scenarios, the results revealed clear differences between the various approaches, leading to notable practical conclusions for users and developers

    A novel, integrated in vitro carcinogenicity test to identify genotoxic and non-genotoxic carcinogens using human lymphoblastoid cells

    Get PDF
    Human exposure to carcinogens occurs via a plethora of environmental sources, with 70–90% of cancers caused by extrinsic factors. Aberrant phenotypes induced by such carcinogenic agents may provide universal biomarkers for cancer causation. Both current in vitro genotoxicity tests and the animal-testing paradigm in human cancer risk assessment fail to accurately represent and predict whether a chemical causes human carcinogenesis. The study aimed to establish whether the integrated analysis of multiple cellular endpoints related to the Hallmarks of Cancer could advance in vitro carcinogenicity assessment. Human lymphoblastoid cells (TK6, MCL-5) were treated for either 4 or 23 h with 8 known in vivo carcinogens, with doses up to 50% Relative Population Doubling (maximum 66.6 mM). The adverse effects of carcinogens on wide-ranging aspects of cellular health were quantified using several approaches; these included chromosome damage, cell signalling, cell morphology, cell-cycle dynamics and bioenergetic perturbations. Cell morphology and gene expression alterations proved particularly sensitive for environmental carcinogen identification. Composite scores for the carcinogens’ adverse effects revealed that this approach could identify both DNA-reactive and non-DNA reactive carcinogens in vitro. The richer datasets generated proved that the holistic evaluation of integrated phenotypic alterations is valuable for effective in vitro risk assessment, while also supporting animal test replacement. Crucially, the study offers valuable insights into the mechanisms of human carcinogenesis resulting from exposure to chemicals that humans are likely to encounter in their environment. Such an understanding of cancer induction via environmental agents is essential for cancer prevention

    Tapping into non-English-language science for the conservation of global biodiversity.

    Get PDF
    The widely held assumption that any important scientific information would be available in English underlies the underuse of non-English-language science across disciplines. However, non-English-language science is expected to bring unique and valuable scientific information, especially in disciplines where the evidence is patchy, and for emergent issues where synthesising available evidence is an urgent challenge. Yet such contribution of non-English-language science to scientific communities and the application of science is rarely quantified. Here, we show that non-English-language studies provide crucial evidence for informing global biodiversity conservation. By screening 419,679 peer-reviewed papers in 16 languages, we identified 1,234 non-English-language studies providing evidence on the effectiveness of biodiversity conservation interventions, compared to 4,412 English-language studies identified with the same criteria. Relevant non-English-language studies are being published at an increasing rate in 6 out of the 12 languages where there were a sufficient number of relevant studies. Incorporating non-English-language studies can expand the geographical coverage (i.e., the number of 2° × 2° grid cells with relevant studies) of English-language evidence by 12% to 25%, especially in biodiverse regions, and taxonomic coverage (i.e., the number of species covered by the relevant studies) by 5% to 32%, although they do tend to be based on less robust study designs. Our results show that synthesising non-English-language studies is key to overcoming the widespread lack of local, context-dependent evidence and facilitating evidence-based conservation globally. We urge wider disciplines to rigorously reassess the untapped potential of non-English-language science in informing decisions to address other global challenges. Please see the Supporting information files for Alternative Language Abstracts
    corecore