23 research outputs found
SLAM Project - Long Term Ecological Study of the Impacts of Climate Change in the natural forests of Azores: V - New records of terrestrial arthropods after ten years of SLAM sampling
BACKGROUND: A long-term study monitoring arthropods (Arthropoda) is being conducted since 2012 in the forests of Azorean Islands. Named "SLAM - Long Term Ecological Study of the Impacts of Climate Change in the natural forest of Azores", this project aims to understand the impact of biodiversity erosion drivers in the distribution, abundance and diversity of Azorean arthropods. The current dataset represents arthropods that have been recorded using a total of 42 passive SLAM traps (Sea, Land and Air Malaise) deployed in native, mixed and exotic forest fragments in seven Azorean Islands (Flores, Faial, Pico, Graciosa, Terceira, São Miguel and Santa Maria). This manuscript is the fifth data-paper contribution, based on data from this long-term monitoring project.
NEW INFORMATION: We targeted taxa for species identification belonging to Arachnida (excluding Acari), Chilopoda, Diplopoda, Hexapoda (excluding Collembola, Lepidoptera, Diptera and Hymenoptera (but including only Formicidae)). Specimens were sampled over seven Azorean Islands during the 2012-2021 period. Spiders (Araneae) data from Pico and Terceira Islands are not included since they have been already published elsewhere (Costa and Borges 2021, Lhoumeau et al. 2022). We collected a total of 176007 specimens, of which 168565 (95.7%) were identified to the species or subspecies level. For Araneae and some Hemiptera species, juveniles are also included in this paper, since the low diversity in the Azores allows a relatively precise species-level identification of this life-stage. We recorded a total of 316 named species and subspecies, belonging to 25 orders, 106 families and 260 genera. The ten most abundant species were mostly endemic or native non-endemic (one Opiliones, one Archaeognatha and seven Hemiptera) and only one exotic species, the Julida Ommatoiulus moreleti (Lucas, 1860). These ten species represent 107330 individuals (60%) of all sampled specimens and can be considered as the dominant species in the Azorean native forests for the target studied taxa. The Hemiptera were the most abundant taxa, with 90127 (50.4%) specimens. The Coleoptera were the most diverse with 30 (28.6%) families.
We registered 72 new records for many of the islands (two for Flores, eight for Faial, 24 for Graciosa, 23 for Pico, eight for Terceira, three for São Miguel and four for Santa Maria). These records represent 58 species. None of them is new to the Azores Archipelago. Most of the new records are introduced species, all still with low abundance on the studied islands. This publication contributes to increasing the baseline information for future long-term comparisons of the arthropods of the studied sites and the knowledge of the arthropod fauna of the native forests of the Azores, in terms of species abundance, distribution and diversity throughout seasons and years.AMCS is supported by the Ramón y Cajal program (RYC2020-029407-I), financed by the Spanish Ministerio de Ciencia e Innovación. IRA and MB were funded by Portuguese funds through FCT – Fundação para a Ciência e a Tecnologia, I.P., under the Norma Transitória – DL 57/2016/CP1375/CT0003 and DL 57/2016/CP1375/CT0001, respectively.
Several projects supported the acquisition of traps during the last ten years, namely: EUFCT-NETBIOME –ISLANDBIODIV grant 0003/2011 (between 2012 and 2015); Portuguese National Funds, through FCT – Fundação para a Ciência e Tecnologia, within the project UID/BIA/00329/2013-2020; Direcção Regional do Ambiente - PRIBES (LIFE17 IPE/PT/ 000010) (2019); Direcção Regional do Ambiente – LIFE-BETTLES (LIFE18 NAT_PT_000864) (2020); AZORESBIOPORTAL – PORBIOTA (ACORES-01-0145- FEDER-000072) (2019); (FCT) - MACRISK-Trait-based prediction of extinction risk and invasiveness for Northern Macaronesian arthropods (FCT-PTDC/BIA-CBI/0625/2021) (2021-2022).
Data curation and open Access of this manuscript were supported by the project MACRISK-Trait-based prediction of extinction risk and invasiveness for Northern Macaronesian arthropods (FCT-PTDC/BIA-CBI/0625/2021).info:eu-repo/semantics/publishedVersio
Crop pests and predators exhibit inconsistent responses to surrounding landscape composition
The idea that noncrop habitat enhances pest control and represents a win–win opportunity to conserve biodiversity and bolster yields has emerged as an agroecological paradigm. However, while noncrop habitat in landscapes surrounding farms sometimes benefits pest predators, natural enemy responses remain heterogeneous across studies and effects on pests are inconclusive. The observed heterogeneity in species responses to noncrop habitat may be biological in origin or could result from variation in how habitat and biocontrol are measured. Here, we use a pest-control database encompassing 132 studies and 6,759 sites worldwide to model natural enemy and pest abundances, predation rates, and crop damage as a function of landscape composition. Our results showed that although landscape composition explained significant variation within studies, pest and enemy abundances, predation rates, crop damage, and yields each exhibited different responses across studies, sometimes increasing and sometimes decreasing in landscapes with more noncrop habitat but overall showing no consistent trend. Thus, models that used landscape-composition variables to predict pest-control dynamics demonstrated little potential to explain variation across studies, though prediction did improve when comparing studies with similar crop and landscape features. Overall, our work shows that surrounding noncrop habitat does not consistently improve pest management, meaning habitat conservation may bolster production in some systems and depress yields in others. Future efforts to develop tools that inform farmers when habitat conservation truly represents a win–win would benefit from increased understanding of how landscape effects are modulated by local farm management and the biology of pests and their enemies