81 research outputs found
Recommended from our members
A Distributed Consensus Algorithm for Decision Making in Service-Oriented Internet of Things
In a service-oriented Internet of things (IoT) deployment, it is difficult to make consensus decisions for services at different IoT edge nodes where available information might be insufficient or overloaded. Existing statistical methods attempt to resolve the inconsistency, which requires adequate information to make decisions. Distributed consensus decision making (CDM) methods can provide an efficient and reliable means of synthesizing information by using a wider range of information than existing statistical methods. In this paper, we first discuss service composition for the IoT by minimizing the multi-parameter dependent matching value. Subsequently, a cluster-based distributed algorithm is proposed, whereby consensuses are first calculated locally and subsequently combined in an iterative fashion to reach global consensus. The distributed consensus method improves the robustness and trustiness of the decision process
A Game Theoretical Method for Cost-Benefit Analysis of Malware Dissemination Prevention
Copyright © Taylor & Francis Group, LLC. Literature in malware proliferation focuses on modeling and analyzing its spread dynamics. Epidemiology models, which are inspired by the characteristics of biological disease spread in human populations, have been used against this threat to analyze the way malware spreads in a network. This work presents a modified version of the commonly used epidemiology models Susceptible Infected Recovered (SIR) and Susceptible Infected Susceptible (SIS), which incorporates the ability to capture the relationships between nodes within a network, along with their effect on malware dissemination process. Drawing upon a model that illustrates the network’s behavior based on the attacker’s and the defender’s choices, we use game theory to compute optimal strategies for the defender to minimize the effect of malware spread, at the same time minimizing the security cost. We consider three defense mechanisms: patch, removal, and patch and removal, which correspond to the defender’s strategy and use probabilistically with a certain rate. The attacker chooses the type of attack according to its effectiveness and cost. Through the interaction between the two opponents we infer the optimal strategy for both players, known as Nash Equilibrium, evaluating the related payoffs. Hence, our model provides a cost-benefit risk management framework for managing malware spread in computer networks
Design and performance evaluation of a lightweight wireless early warning intrusion detection prototype
The proliferation of wireless networks has been remarkable during the last decade. The license-free nature of the ISM band along with the rapid proliferation of the Wi-Fi-enabled devices, especially the smart phones, has substantially increased the demand for broadband wireless access. However, due to their open nature, wireless networks are susceptible to a number of attacks. In this work, we present anomaly-based intrusion detection algorithms for the detection of three types of attacks: (i) attacks performed on the same channel legitimate clients use for communication, (ii) attacks on neighbouring channels, and (iii) severe attacks that completely block network's operation. Our detection algorithms are based on the cumulative sum change-point technique and they execute on a real lightweight prototype based on a limited resource mini-ITX node. The performance evaluation shows that even with limited hardware resources, the prototype can detect attacks with high detection rates and a few false alarms. © 2012 Fragkiadakis et al
- …