81 research outputs found

    Modelling effective product development systems as network-of-networks

    Get PDF

    Problem Based Learning in Digital Forensics

    Full text link

    A Game Theoretical Method for Cost-Benefit Analysis of Malware Dissemination Prevention

    Get PDF
    Copyright © Taylor & Francis Group, LLC. Literature in malware proliferation focuses on modeling and analyzing its spread dynamics. Epidemiology models, which are inspired by the characteristics of biological disease spread in human populations, have been used against this threat to analyze the way malware spreads in a network. This work presents a modified version of the commonly used epidemiology models Susceptible Infected Recovered (SIR) and Susceptible Infected Susceptible (SIS), which incorporates the ability to capture the relationships between nodes within a network, along with their effect on malware dissemination process. Drawing upon a model that illustrates the network’s behavior based on the attacker’s and the defender’s choices, we use game theory to compute optimal strategies for the defender to minimize the effect of malware spread, at the same time minimizing the security cost. We consider three defense mechanisms: patch, removal, and patch and removal, which correspond to the defender’s strategy and use probabilistically with a certain rate. The attacker chooses the type of attack according to its effectiveness and cost. Through the interaction between the two opponents we infer the optimal strategy for both players, known as Nash Equilibrium, evaluating the related payoffs. Hence, our model provides a cost-benefit risk management framework for managing malware spread in computer networks

    Design and performance evaluation of a lightweight wireless early warning intrusion detection prototype

    Get PDF
    The proliferation of wireless networks has been remarkable during the last decade. The license-free nature of the ISM band along with the rapid proliferation of the Wi-Fi-enabled devices, especially the smart phones, has substantially increased the demand for broadband wireless access. However, due to their open nature, wireless networks are susceptible to a number of attacks. In this work, we present anomaly-based intrusion detection algorithms for the detection of three types of attacks: (i) attacks performed on the same channel legitimate clients use for communication, (ii) attacks on neighbouring channels, and (iii) severe attacks that completely block network's operation. Our detection algorithms are based on the cumulative sum change-point technique and they execute on a real lightweight prototype based on a limited resource mini-ITX node. The performance evaluation shows that even with limited hardware resources, the prototype can detect attacks with high detection rates and a few false alarms. © 2012 Fragkiadakis et al
    • …
    corecore