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Abstract Literature in malware proliferation focuses on modelling and analysing its spread dynamics. Epidemiology models, 
which are inspired by the characteristics of biological disease spread in human populations, have been used in the past against this 
threat to analyse the way malware spreads in a network. This work presents a modified version of the commonly used 
epidemiology models SIR and SIS, which incorporates the ability to capture the relationships between nodes within a network, 
along with their effect on malware dissemination process. Drawing upon a model that illustrates the network’s behaviour based on 
the attacker’s and the defender’s choices, we use game theory to compute optimal strategies for the defender to minimise the 
effect of malware spread, minimising at the same time the security cost. We consider three defence mechanisms, “patch”, 
“removal”, and “patch and removal”, which correspond to the defender’s strategy, used probabilistically with a certain rate. The 
attacker chooses the type of attack according to its effectiveness and cost. Through the interaction between the two opponents we 
infer the optimal strategy for both players, known as Nash Equilibrium, evaluating the related payoffs. Hence, our model provides 
a cost-benefit risk management framework for managing malware spread in computer networks. 
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1 INTRODUCTION 
Malicious software, known as malware, is a considerable threat to the realm of interconnected computer systems. Often built by 
cyber-criminals, malware aims to compromise target computers with the ultimate goal of stealing or corrupting sensitive data, 
gaining access to private systems or rendering cyberspace services unavailable. The impact of such malicious activities entail 
high financial consequences for both the targeted enterprises and their customers [5]. Different classes of malware exist, such as 
computer viruses, worms, trojan horses, keyloggers and many others [8]. With the ever growing importance of networked 
computing, malware that replicates itself in order to spread, known as a worm, has become one of the most efficient ways of 
wide-scale attacks. 

Defence mechanisms such as firewalls and anti-viruses have been developed to defend against malicious software. Those 
mechanisms investigate the problem of malware at micro level by utilising experimental and heuristic findings, such as virus 
signatures, in order to prevent or detect and cure a computer’s infection. Nevertheless, malware spread in a network of 
computers underlines the need for a network-level solution. 

In light of these challenges several models that can describe the dynamics of malware proliferation over a computer network 
have been proposed [30]. Most of them base their function on epidemiological models. Such models have been used to represent 
and analyse the dynamics of a virus spread within a human population. Additionally, Game Theory has been introduced in a 
number of occasions across the fields of computer and network security (e.g. [22, 7]) in order to describe the interactions between 
an attacker and the defender and the ways their actions may affect each other. As malware acts based on inscribed behaviour 
coded by cyber criminals, approaching it as a threat agent on its own right under the premise of game theory becomes a 
reasonable assumption. 

Our work aims to combine established epidemiology models with a game theoretic framework that captures the state of the 
system when both the defender and attacker use a variety of strategies to achieve their personal goal. We develop a game 
between the defender and malware’s author, taking into account the spread dynamics, so that defenders manage to compute their 
optimal strategy by minimising the cost of security, on a cost-benefit basis. 

The rest of the paper is structured as follows. Section 2 presents the basics of epidemiology models and game theory as it is 
applied in malware analysis. Special emphasis is given to the “FLIPIT” game. Section 3 introduces our model. The 
application of our approach to a case-study is presented in Section 4. Section 5 discusses related work. Finally, Section 6 
discusses the conclusions drawn from this work and suggests ideas for further work. 



 
2 BACKGROUND KNOWLEDGE 

 
2.1 Mathematical Specification of Standard Epidemiology Models 

 
This section presents the mathematical specification of the two commonly used epidemiology models (SIS and SIR) on which 

our model is also based. In general, such models are formulated over a fixed-size network. Nodes represent individuals and links 
or edges between nodes represent contacts between individuals. The infection spreads along direct links between nodes and the 
network is assumed to be symmetric, so that no preferential direction of the malware proliferation exists. 

 

2.1.1 The SIR Model 
In the SIR model [10, 9, 11], the total population is divided into three parts: i) susceptible nodes (denoted by S), ii) infected 

nodes (denoted by I) and iii) recovered nodes (denoted by R). The differential equations 1, 2 and 3 describe the rate of change 
of the susceptible nodes, infected nodes and recovered nodes respectively over time [4]. Here β denotes the infection rate (the 
rate at which an infected node infects other nodes within the network) and r denotes the recovery/immunisation rate (the rate at 
which we recover/patch infected nodes within the network). In our work a contact is considered as a network link between two 
nodes and as all nodes are connected to one another (directly or through a number of hops depending on the network’s topology), 
they are always in contact with each other. Thus, the probability of a susceptible node to be infected does not depend on the nature 
of the network topology. 
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𝑑𝑡

= −𝛽𝐼𝑆                                                   (1) 

 

𝑑𝐼
𝑑𝑡
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𝑑𝑅
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= 𝑟𝛪                                                         (3) 

2.1.2 The SIS Model 
In the SIS model, the total population is divided in two parts, susceptible nodes (denoted by S) and infected nodes (denoted 

by I). Equations 4 and 5 model the rate of change of susceptible nodes and infected nodes respectively over time [17]. 
Again, β is the infection rate and this time γ is the recovery rate/disinfection. Even though the term “recovery rate” is used in 
both the SIR and the SIS model, it is used for different purposes. In the first case recovery rate refers to immunisation (the 
recovered node cannot be reinfected), while in the latter it refers to disinfection (the recovered node can be reinfected). 
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2.2 Brief Introduction to Game Theory 
Game theory provides us with a set of tools designed to analyse situations where two or more decision makers interact 

[20,2,3]. Decision makers are identified as unique players, their decisions as strategies and the formal description of the 
interaction between them is denoted as a game [27]. The basic assumption of game theory is that every player acts rationally, 
aiming at the best possible individual outcome, and take into account other players’ decisions. When a player’s strategy always 
leads to a better reward for that player compared to another strategy, no matter what the remaining players have decided, then we 
say that the first strategy dominates the second. Solution to a game is the description of the strategies that each player has to 
follow in order to achieve the best possible outcome. Nash Equilibrium of a game, is a state (combination of attacker’s and 
defender’s strategies) where each player has no incentive to unilaterally deviate from, because that would lead to a reduced 
reward. In other words, the attacker’s strategy in a Nash Equilibrium is the best response to the defender’s strategy that 
participates in the same Nash Equilibrium, and vice versa. 

 



2.2.1 Game Theory in Security and Malware Analysis 
Traditional network security mechanisms such as Intrusion Detection and/or Prevention Systems (IDS/IPS) analyse malware at 

a level of specific technical detail. They focus on collecting, dissecting and recording its structure and behaviour. This allows them 
to respond to attacks that are based on well-known techniques. For instance, IDS algorithms apply malware-signature 
identification or make use of heuristic algorithms to detect suspicious system behaviours that indicate a possible infection. 
Nevertheless, since they mostly rely on such experimental findings, they are insufficient against sophisticated attacks, which may 
utilise unknown techniques (e.g. zero-day attacks). 

Traditional network security solutions lack a macro-level quantitative decision framework [22]. Various researchers have 
focused their work on utilising game theory in order to provide a holistic solution [15, 31, 12, 7]. The relationship between 
attacker and defender can be modelled as the interaction between two competing parts in a game theoretic scenario. The 
malware’s goal is to spread widely, whereas the defender aims at protecting the network against the attack (i.e. minimising 
spread), whilst keeping costs as low as possible. Game theory can be used to examine and evaluate all possible scenarios given 
the outcomes of each player’s strategy and return the best one. 

The “FLIPIT” Game: To develop our game we first devised a cost-benefit model to help us compute the gain of each 
strategy. This cost-benefit model is based on another game theoretic model known as “The FLIPIT Game” [7]. Its authors 
have developed a model that describes the situation in which an attacker periodically takes over a system and is not 
immediately detected by the defender. The model includes two players (i.e. attacker and defender) and a shared resource. The 
two opponents compete to control the shared resource. The attacker tries to put the resource into a bad state (e.g. a compromise of 
a system or an asset, revelation of a secret), while the defender puts the resource into a good state (asset disinfection or 
implementation of a control). The objective of each player is to control the resource for the largest possible fraction of time and 
minimise at the same time their total cost. Players do not know the current situation of the game when other players make a 
move; they learn that only when they make a move. Making a move incurs cost and taking over control gains benefit. Each player 
loses some points per move and gains some points per second when he is in control. 

The mathematical description of the game is provided below. Here we assume that the defender is player 0 and   the 
attacker is player 1. Player i makes Ni(t) moves per second, pays ki points per move and gains (Gi(t)) one point per second 
when the source is under their control. 

The total period of time t is the time the resource is controlled by the defender plus the time controlled by the attacker as 
shown in Equation 6. 

 

 𝐺! 𝑡 +𝐺! 𝑡 = 𝑡                                   (6) 
 

Thus, for each player, the gain rate γi(t) is equal to the fraction of time that player i has the shared resource under control, as shown 
in Equations 7 and 8. 

𝛾! =
𝐺!(𝑡)
𝑡

                                                 (7) 

𝛾! 𝑡 +𝛾! 𝑡 =1                                     (8) 

Equation 9 calculates the benefit of a strategy, which is defined as the gain minus the total cost. The aim of each player is to 
maximise the value of benefit. 

 𝐵𝑖 𝑡 =  𝐺𝑖 𝑡 − 𝑘𝑖 ·  𝑁𝑖 𝑡                 (9) 
 
The generic description of a shared resource taken under control by an attacker is suitable to describe the situation of a computer 
network under attack from a worm. In our work, we view the network as the shared resource, which both the attacker and defender 
try to take under control. However, the shared resource cannot be instantly fully taken over, since a worm spreads in a subset of the 
total population in each time step rather the whole population. Hence, only a fraction of the shared resource can be taken over by 
the attacker (§3.5 provides more details for our game).  

 
3 PROPOSED MODEL 

Worms have the ability to self-replicate and spread without human intervention in a network [23], resembling human 
viruses. They may utilise various proliferation mechanisms, depending on the way they scan the network to find their new 
targets. Our work focuses on the examination of random scanning worms, which select their target IP addresses randomly 
without any topological restrictions [18, 26]. For a random scanning worm the whole Internet is seen as a fully interconnected 



network. Consequently, each node has the same probability to get infected. This type of malware has been widely used by 
cyber-criminals, as it is easy to deploy. However, such attacks have lower infection rates than other topology-oriented scanning 
methods, such as malware that spreads through email exchange or the social media. This holds true as, their randomly picked IP 
addresses might not be used by any device. It is important to note that this work does not focus on modelling the malware 
dissemination process itself, instead it utilises already known modelling techniques and combines them with game theory in order 
to propose optimal mitigation strategies for the defender. 

In the human virus spread paradigm, a ``random scanning'' virus would mean that individuals are always in contact with one 
another. As mentioned, the probability of an individual to get infected by an already infected node is the same for everyone within 
the population. In a network it means that an infected node can infect every other node in the network without topological 
restrictions, since all nodes are linked with one another either directly or indirectly.  
 There are three basic security mitigation practices against the random scanning worm dissemination: i) Remove, ii) Patch and 
iii) both Patch and Remove. Under the SIR and SIS models, a susceptible node can either be patched against the certain worm and 
become immune to it, or stay in the susceptible state. If a susceptible node is infected then it can either stay infected and 
consequently spread the worm, or it can use the removal tool (e.g. an antivirus) in order to remove the worm. However, the removal 
tool does not encompass immunisation functionality. Thus, when an infected node removes the worm it returns back to the 
susceptible state, where it can subsequently be reinfected. However, if an infected node uses both the remove tool and the patch 
against the worm then it moves to recovery state, where it is immune against the specific worm. For each of the three security 
strategies, we set up differential mathematical expressions as in SIR and SIS models, which describe the dynamics of the system. 
 

 
Figure 1: Patch Strategy Model - State transition 

 
3.1 Malware Proliferation with Patch Strategy 

When the Patch Strategy is used, susceptible nodes become immune to the worm, but infected nodes cannot recover from the 
infection. In this case, the worm and the defender seem to take part in a race. If the worm spreads very fast, it will infect most 
computers in a short time before defenders notice it; if people in the network can patch their computers much faster than the 
worm’s proliferation, the wide-range infection can be avoided. The model is depicted in Figure 1. 

The mathematical specification of the Patch Strategy is given in Equations 10,11 and 12, where S is the susceptible 
population, I is the infected population and R is the immune population. β is the infection rate and γ is the immunisation rate. 
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Figure 2: Removal Strategy Model - State transition 

 
3.2 Malware Proliferation with Removal Strategy 

When the Removal Strategy is used, infected nodes can recover from the infection when the worm is detected and removed. 
However, nodes that have recovered from an infection are still susceptible to the specific worm, since no immunisation against it 
is included. In this case, the model is transformed into a SIS model in which the system reaches an equilibrium where the number 
of infected nodes and the number of susceptible nodes stay almost constant (Figure 2).  
 The mathematical specification of Removal Strategy is given in Equations 13 and 14. Again, S refers to the susceptible 
population and I refers to the infected population. β is the infection rate and r is the removal or recovery rate. As seen, no 
recovered population is found in the system. 

 
𝑑𝑆
𝑑𝑡

= −𝛽𝐼𝑆 + 𝑟𝐼                                 (13) 

 

𝑑𝐼
𝑑𝑡
= 𝛽𝐼𝑆 − 𝑟𝐼                                      (14) 

 

3.3 Malware Proliferation with Patch and Removal Strategy 

The last strategy devised is the Patch and Removal. In this strategy both moves of patch and removal are available. A 
susceptible node can become immune to the worm when the patch is used. Furthermore, an infected node can recover from the 
infection if the worm is removed and then become immune to the worm by using the patch. This is the most efficient, yet 
costly, way to eliminate malware spread. Eventually, all nodes in the network will be immune against the specific worm. The 
strategy model is shown in Figure 3. 

The differential equations that describe the dynamics of the model are shown in Equations 15, 16, 17 and 18. S refers to the 
susceptible population, I refers to the infected population, R is used for the recovered and immunised population and Q refers to 
the population that becomes immune to the malware. As before, β is the infection rate, γ refers to the immunisation rate when a 
susceptible node uses the specific patch and λ is the “removal and patch” rate. 
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Figure 3: Patch and Removal Strategy Model - State transition 

 

 
Figure 4: Unified Malware Dissemination Model - State transition 

 

3.4 Unified Malware Proliferation Model 

By combining the aforementioned mitigation strategies we can construct a unified malware proliferation probabilistic 
model, where each of the strategies is chosen by the defender with a probability P, based on the patching and immunisation 
rates. In this model we have three states, the susceptible compartment, the infected population and the immunised. The state 
transitions of the model are depicted in Figure 4. A susceptible node can either be infected with infection rate β or immunised 
with immunisation rate γ. An infected node can either be disinfected and immunised with rate λ or just disinfected with rate r. 
Lastly, an immunised node cannot transit in any other state. The emerging dynamics are described by the differential Equations 
19, 20 and 21. 

By observing the model we can see that the defender can control the disinfection and immunisation rates (γ, λ, r), while the 
attacker controls the infection rate (β). These rates will form the strategies of the players in our game model. 

 
𝑑𝑆
𝑑𝑡
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𝑑𝑅
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Game theory takes into account all the possible outcomes in order to find the optimal strategies, from which if either of the 

players deviates will always get less payoff. These strategies represent the Nash Equilibrium of the game. We compute all 
possible outcomes and find the Nash Equilibrium by the pair of strategies from which, if either players deviates will always get 
less payoff.  

Figure 5 presents the state of the system for a specific configuration for both players (the attacker has chosen β = 1 node/hour 
and the defender r = 2 nodes/hour, γ = 1 node/hour, λ = 1 node/hour, N = 104 nodes and I0 = 15 nodes initial infected population). 
It is evident that there is a very fast increase of the infected population. In fact, within less than 20 hours the malware has infected 
most of the population. However, after the first 20 hours a small gradual decrease of the infected population appears, followed by 
an increase in the immune population. This is mainly the result of the “disinfection and immunisation” strategy. Changing one of 
the parameters of the game can result in a whole new situation, as seen in Figure 6, where the defender has increased the 
“disinfection and immunisation” rate (λ) to 15 nodes/hour. In this scenario, the immunised population has increased significantly. 
At the same time, however, the cost for the defender increases, since higher security rate requires additional resources. As 
discussed earlier, the more security the defender applies the higher the cost she has to pay, however the lower becomes the impact 
of the attack. For instance, Figure 7 depicts the state of the system when the defender increases their immunisation rate to γ = 100 



nodes/hour. The final state of the system is better than in Figure 6, since the final infected population is less. However, at the same 
time, this increases the defender’s cost, since increasing the immunisation rate requires additional resources. 

3.5 Game Theoretical Cost Benefit Analysis 

In “FLIPIT” [7], two opponents compete to gain full control of a shared resource and gain is defined by the time the resource is 
under one’s control. In our epidemiology model, the shared resource is the population of nodes in the network. 
 

 
Figure 5: β = 1 node/hour, r = 2 nodes/hour, γ = 1 node/hour, λ = 1 node/hour, N = 104 nodes, I0 = 15 nodes. 

 

 
Figure 6: β = 1 node/hour, r = 2 nodes/hour, γ = 1 node/hour, λ = 15 nodes/hour, N = 104 nodes, I0 = 15 nodes. 

 

 
Figure 7: β = 1 node/hour, r = 2 nodes/hour, γ = 100 nodes/hour, λ = 15 node/hour, N = 104 nodes, I0 = 15 nodes. 

  
Each time unit, the two opponents (attacker and defender) perform actions to take under their control a part of the population. The 
population under the attacker’s control is denoted as the infected population and corresponds to the Infected (I) compartment in 
the unified malware proliferation model presented above. Therefore, the gain for the attacker when spreading malware in a 
network is represented by the I compartment of the model. On the other hand, if N is the initial population then N − I is the 
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population under the defender’s control. This population includes both the Immunised (R) and the Susceptible (S) states of the 
unified model. As the population in each compartment changes in time according to the dynamics described by the above 
equations, the total gain of each player is defined by the average fraction of node population under one’s control. Therefore, by 
considering player 0 as defender and player 1 as attacker we define Gi(t) the gain of player i and calculate it as shown in Equation 
22, where Pi(t) is the fraction of population under control by player i over time and tk is the total time for which our model is 
running. 
 

𝐺! 𝑡!
1
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𝑃!
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!
𝑡 𝑑𝑡                                   (22) 

 
As there are only two fractions of populations, one under the control of the defender and one under the control of the attacker, 
then P0(t) = 1−P1(t). Hence: G0(t)+G1(t) = 1. 

Before the game both players pick their strategies in order to optimise their outcome. The game is non-cooperative, static, 
imperfect, complete information, and non-constant-sum game. There is no cooperation between the players (network security 
games fall under the category of non-cooperative games, as there is no cooperation between attacker and defender [22]).  As a 
static game, each player has a pre-computed move list (each move denoted as a strategy) from which the best move is chosen to 
maximise their personal benefit. Both players choose their strategies before the game in a one-shot fashion, not being able to 
change them during the game. It is an imperfect game as the two players choose their strategies simultaneously, without knowing 
the choices of the other players. However, they are aware of the opponent’s available strategies and payoffs, therefore it is a 
complete information game. Finally, it is a non-constant game as the sum of the players’ rewards is not always the same, for any 
combination of their strategies. In general, a pure Nash Equilibrium does not necessarily exist for this kind of games. Nevertheless, 
a pure Nash Equilibrium exists in our case study (see §4). 

Accounting for all actions of all possible strategy combinations (β, r, γ, λ), the optimally defensive strategy can be identified, 
which returns the maximum possible gain under the minimum possible cost, regardless of attacker’s chosen strategy. 
 
3.5.1 Defining the Players’ Strategies 

In the beginning, both players choose their strategies, namely (γ, λ, r) for the defender and (β) for the attacker.  
 More specifically, player 0 (defender) can manipulate the immunisation rate of two compartments: the susceptible population 
by immunising susceptible nodes before the spread of the worm (represented by γ in our unified model), and the infected 
population by disinfecting and then immunising the infected nodes (represented by λ in our unified model). Furthermore, the 
defender can disinfect infected nodes with disinfection rate r. Therefore, its strategy is defined by those three parameters in the 
unified malware proliferation model. Choosing them efficiently can increase the player’s benefit. However, each of these actions 
costs, what is known as security cost. In this work, the cost of immunisations is considered higher (a more resource demanding 
operation) than the cost of disinfection, since it implies patching the vulnerability. In some scenarios, for instance patching an 
organization’s mission critical host, it can become prohibitively costly. 

On the other hand, player 1 (attacker) has the ability to manipulate the infection rate (denoted by β in our model) of the 
malware, by choosing among different random scanning worms with different infection rates. The infection rate of each scanning 
worm may depend on the vulnerability it exploits and the randomisation mechanism it utilises. There-fore, the higher the infection 
rate, the higher is the software complexity of the malware and consequently the cost of deploying the attack increases. For that 
reason, the attacker aims to find the infection rate that will return the optimal payoff. 

 
Table 1:Cost for Code-Red worm. 

Actions 
Complexity 

Total 
Low:1 Medium:2 High:3 

Exploit the buffer vulnerability  2   
Generate random IP addresses 1   4 
Launch 99 threads with IP addresses 1    

 
 

 
 
 



3.5.2 Defining the Players’ Payoffs 
As mentioned both players’ strategies bear some cost. For player 0, we define cost (C0(t)) as the total number of moves made by 
player 0 (n0(t) = n0,1(t) + n0,2(t) + n0,3(t), where n0,1(t), n0,2(t) and n0,3(t) correspond to the number of disinfections, 
immunisations and ‘disinfections and immunisations’ respectively), multiplied by each move’s cost (k0,j ) (Equation 23). The 
move’s cost is defined as the cost of disinfecting (k0,1), immunising (k0,2) or disinfecting and immunising (k0,3)) a node. 
 

C0(t) = n0,1(t) · k0,1 + n0,2(t) · k0,2 + n0,3(t) · k0,3      (23) 
 
We define as cost for player 1 the perceived complexity of the algorithm that the malware implements. The complexity of the 
algorithm is commensurate with the infection capabilities of the malware. Therefore, the higher the infection rate of the worm is, 
the higher is also the cost, k1, that attacker has to pay in order to implement the malware. 

C1(t) = k1                                                                                     (24) 
 
Each player’s payoff is equal to the player’s total gain minus the related cost according to Equation 25. 

Bi (t) = Gi (t) − Ci (t)                              (25) 
 

 In order to compute costs, we utilise quantitative tables of operational complexity. A strategy by either player (e.g. Patch 
Strategy for the defender or Code-Red worm for the attacker) may encompass several actions, with each action characterised 
by a complexity level. For practical reasons, we set up empirically three levels of perceived complexity, low, medium and high, 
and assign a score to each of them, 1, 2 and 3, respectively. Therefore, the cost of a move for player 0 or the total cost of 
player 1 is equal to the sum of the costs of the actions it involves. An example is given in Tables 1 and 2 where we present the 
actions cost for the defender and the attacker when the latter uses the Code- Red worm (in which case the attacker has 
already chosen its strategy). 

As in “FLIPIT”, the gain is defined by fraction of population under each player’s control. The population under the 
attacker’s control corresponds to the infected population, while the population under the defender’s control corresponds to the 
susceptible plus the infected population. 

In order to find the defender’s strategy that will return the optimal payoff, known as the Nash Equilibrium strategy, we 
construct the description of the game, which is a table with all possible payoffs for both players for all the available 
combinations of strategies. More details on how these strategies are calculated, can be found in Section 4.  

 
4 APPLICATION OF THE MODEL - CASE STUDY 

In this section we apply our game theoretical malware proliferation model to a real case scenario, where the attacker can choose 
between five hypothetical worms with different infection rates (β). For the determination of the infection rates we used as a 
reference the Code-Red worm. According to [28], a node infected by this worm infects other nodes with a rate 1.62 nodes per hour, 
thus β = 1.62 nodes/hour. Albeit old, we have chosen Code-Red because it is a random-scanning worm with no topology 
constraints and, thus, its characteristics fit well into the generic nature of our abstraction. Its behaviour has also been thoroughly 
studied in the past [19, 28, 24]. 

 
 

Table 2: The cost of each move for the defender 

Actions 
 

 
Complexity 

Total 
Low:1 Medium:2 High:3 

Patch Detection 
Patch 

 2 
2 

 
4 

Removal Detection 
Reboot 

 
1 

2  3 

Patch and Removal Detection 
Reboot 
Patch 

 
1 

2 
 

2 

 
5 

 
 
 



To provide the attacker with more options, we make the assumption that she can choose among five different types of worms, 
whose propagation rates are equal to integral multiples of Code-Red’s propagation rate. As a result, the attacker can choose 
from five different worms and her available strategies are described as β = k · 1.62, where k = 1, 2, .., 7. 

Moreover, we assume that the defender can determine its strategy by choosing the immunisation rate (0 ≤ γ ≤ 100 
immunisations per hour), the disinfection rate (0 ≤ r ≤ 100 disinfections per hour) or/and the combination of both disinfection and 
immunisation with rate 0 ≤ λ ≤ 100 per hour. It has to be noted that in reality these rates can potentially get higher values, 
depending on the capabilities of the stakeholder and the criticality of the system to which the node population belongs. However, 
for the purposes of our experiment we limit all three rates from 0 to 100. 

To simplify the scenario we predetermined that the cost for the attacker is equal to β · 1000, implying that the propagation rate 
of the attack affect the complexity of the algorithm that implements the attack. We also make the assumption that the cost of 
a disinfection is 10 and the cost of an immunisation is 100. Table 3 forms the description of the game. Each cell within the table 
corresponds to a pair of payoffs, one for the attacker and one for the defender, for the specific pair of strategies. For instance, PA1,1 
corresponds to the attacker’s payoff when the attacker chooses the strategy β = 1.62 and the defender chooses the strategy (γ 
= 0, r = 0, λ = 0). The defender’s payoff for the same pair of strategies is PD1,1 

It is worth noting that a different selection of the parameters of this case study will obviously change the outcome of the 
game, without however changing the principles of the proposed model. These parameters are given here not as a reference, 
which falls outside the scope of this work, but to demonstrate the application of our unified model against malware 
proliferation. The parameters depend on each malware proliferation scenario, namely depend on the skills and goals of the attacker 
and the risk appetite of the defender (organization, individual). 

For the simulation of the epidemiology model we utilised the Ventana Simulation Environment (Vensim). The simulations are 
based on Equations 19, 20 and 21, with total population of 10000 nodes, 15 of which were initially infected. For different values 
of β, γ, r and λ we run the model for tk = 168hours = 7days. Vensim produces the data that are needed to set up the game. 
More particularly, it provides the infected, disinfected and immunised populations per unit time (in our case the software is set 
to run the simulations per hour). Therefore, the total number of disinfections (n0,1(tk)), immunisations (n0,2(tk)) and 
‘immunisations and disinfections’ (n0,3(tk)) in those 7 days can be found. Vensim also returns the infected (P1(t)) and 
uninfected (P0(t), susceptible plus immunised) populations per unit time. 
 Based on the results from Vensim, the related costs and gains for both players can now be computed. For every combination of 
strategies (β, γ, r and λ), Vensim returns the P1(t) and P0(t) values, which are used to calculate the gain for each player 
according to Equation 22. As mentioned, it also returns the values n0,1(tk), n0,2(tk ) and n0,3(tk ), which, in conjunction with the 
assumed cost of disinfection  (k0,1 = 10) and cost of immunisation (k0,2 = 100 and therefore k0,3 = 110) and based on Equation 
23, return the defender’s cost. Based on Equation 24 and our assumptions about the attacker’s cost, the attacker’s cost for the 
different values of β is equal to β · 1000. The gain of each player, as mentioned earlier, is equal to the mean fraction of 
population under each player’s control. Thus, for every different combination of strategies we can now compute the related 
payoffs for both players according to Equation 25, populating Table 3. Figure 8 and Figure 9 present the defender’s and the 
attacker’s payoffs respectively, for the different values of β and r, when the defender preselects γ=1 and λ=2. We can observe how 
both players’ payoffs - especially the defender’s payoff - change depending on both player’s strategies. By following the same 
process for every possible combination of β, r, γ and λ, we obtain a four-dimensional matrix, each dimension of which 
corresponds to either β, r, γ or λ. Each cell within the matrix corresponds to the respective payoff, as shown in Table 3. The 
purpose of the game now is to identify the optimal strategy for the defender that returns the best possible payoff regardless the 
attacker’s actions. 
 

Table 3: The description of the Game. 
 

 Defender (γ,r,λ) 
(0,0,0) (1,0,0) (2,0,0) ... (100,100,100) 

A
tta

ck
er

 (β
) 

1.62 PA1,1 ,PD1,1 PA1,2 ,PD1,2 PA1,3 ,PD1,3 ... PA1,106
 ,PD1, 106

 

3.24 PA2,1 ,PD2,1 PA2,2 ,PD2,2 PA2,3 ,PD2,3 ... PA2, 106
 ,PD2, 106

 

4.86 PA3,1 ,PD3,1 PA3,2 ,PD3,2 PA3,3 ,PD3,3 ... PA3, 106 ,PD3, 106
 

6.48 PA4,1 ,PD4,1 PA4,2 ,PD4,2 PA4,3 ,PD4,3 ... PA4, 106 ,PD4, 106
 

8.1 PA5,1 ,PD5,1 PA5,2 ,PD5,2 PA5,3 ,PD5,3 ... PA5, 106 ,PD5, 106
 

 
 



To solve the game the Lemke-Howson algorithm was used, which returns Nash Equilibria for two-player non-zero- sum 
games [14, 25, 29]. The algorithm (implemented in Matlab) takes Table 3 as input and returns the Nash Equilibria of the game. The 
results revealed a unique pure Nash Equilibrium that corresponds to the optimal strategy for defender, represented by the 
values γ = 10, r = 100, λ = 10 with payoff = -215.0926. Our experiment suggests that even though the proactive 
immunisation should be preferred to the other two actions for security reasons, it does not get the maximum value. In fact, the 
game results in a Nash Equilibrium where the disinfection rate (r) is larger than the immunisation rates, meaning that security 
costs have changed the optimal solution for the defender. On the other hand, the attacker’s optimal strategy is to choose β = 11.34 
infections/hour, which is the maximum infection rate in the table. This happens due to the fact that in this particular 
experiment the attacker’s gain is much higher than the cost of his strategy and, therefore, he will always get larger payoff by 
choosing the worm with the highest infection rate. If the cost of attack is much higher (for instance in case the attacker chooses a 
zero-day attack), the resulted Nash Equilibrium may differ. 

 
Figure 8: Defender's payoff depending on the infection rate (β) and recover/disinfection rate (r). The defender has already chosen γ=1 and λ=2. 

 
Figure 9: Attacker’s payoff depending on the infection rate (β) and recover/disinfection rate (r). The defender has already chosen γ=1 and λ=2. 

 
5 RELATED WORK 

The way that viruses and worms spread in a computer network shares common characteristics with the proliferation of 
biological diseases in human populations. Therefore, the analysis of malware can benefit from investigating the behaviour of 
biological diseases. Two types of models for analysing malware proliferation in epidemiology exist, namely stochastic and 
deterministic models. Stochastic models (e.g. [32]) are used to analyse small-scale networks, while deterministic models are 
mainly used to analyse large-scale networks [1]. Our work focuses on malware spread in a large computer network, thus we 
utilise deterministic models. 



The majority of the deterministic epidemiology models are continuous-time models [30], since they offer higher precision when 
representing the emerging dynamics compared to discrete-time models. They divide the computer population of a network, 
known as node population, in discrete compartments, such as “Susceptible” and “Infected”, and model the emerging dynamics 
between those compartments utilising differential equations. Individuals in the epidemic population may have several states, 
including susceptible, infected and recovered. The differential equations utilised to model the transitions between those states 
form the mathematical description of each model. 
 Two models have been widely used in the field of epidemiology modelling: a) the Susceptible-Infected- Recovered (SIR), 
by Kermack and McKendrick [10,  9,11] and b) a modified version of it, known as the Susceptible-Infected- Susceptible (SIS) 
model [21]. Both models assume that all individuals within a closed population (i.e. no births and deaths) are susceptible to 
the malware in the initial phase and an individual may go through each state sequentially. In the SIS model, the state transitions 
of an individual form a circulation. The individual may recover from the infection, but there is still a chance to be reinfected. In 
other words, an individual node becomes again susceptible to the malware after its recovery. In the SIR model, the final state 
is described as the recovered state.  
 An infected individual can recover from the infection and become immune to the malware. An immunised individual cannot 
be reinfected by the same malware. However, neither SIR nor SIS can individually represent reality accurately; the SIR model 
lacks the option of returning an infected node into the susceptible pool, while the SIS model lacks the ability of immunisation after 
recovery. 

The authors of [13] proposed a modified version of the SIR model by introducing the notion of “temporary immunisation”. 
Their model consists of three compartments, Susceptible, Infected, Temporarily Recovered (SIRS). Individuals transit from the 
susceptible state to infected, from infected to temporary recovered and then back to susceptible. In reality this model introduces 
a delay in the traditional SIS model, since the infected individuals that recover return to the susceptible state after an amount 
of time. This amount of time is defined by the rate at which removals lose their immunisation and become susceptible again. 
Resusceptibility represents the situation where a computer infected by malware recovers from the infection and becomes immune, 
remaining however susceptible to modified versions of the same malware. Even though this model is more accurate than the 
traditional SIR and SIS models, it still lacks the ability to encompass situations where the individual becomes immune to the 
malware before getting infected. Furthermore, even though it takes into account the fact that a malware may appear in different 
versions, it does not clarify whether each version exploits the same vulnerability, in which case patching this vulnerability would 
immunise the computer against any variation of the same malware. 

A similar approach is followed by Mishra and Pandey [16], who proposed a dynamic discrete compartmental model. In their 
work, they mathematically formulated a four-state model encompassing the population compartments of Susceptible, Exposed, 
Infectious and Susceptible with Vaccination (SEIS-V). This model adds one more state in the traditional SIS model, the 
Exposed state. By introducing this state the authors denoted that not every susceptible individual is exposed. When a susceptible 
individual is exposed and comes in contact with an infected node then he also gets infected. However, following the SIS 
paradigm an infected individual can recover and transit to the susceptible state. Another additional state is the Vaccinated state, 
where a susceptible node can be “vaccinated” and therefore immunised against a specific malware. Nevertheless, as in the work 
of [13], an immunised node can become susceptible again after a certain amount of time, and as before, the authors do not take 
into account the mechanism of vulnerability patching. Furthermore, the exposed state is meaningless when modelling the spread 
of a random scanning malware in a fully-connected network such as the Internet, where each individual within the susceptible 
population has the same probability of getting infected by an infectious node. 
 Chen et al. [6] focus on modelling the spread of topological scanning malware. This type of malware spreads based on 
topology information. Therefore, the connectivity of each node plays a significant role in the malware propagation within the 
network, directly affecting the rate of infection. Unlike the previous model, it can also be used to model random scanning 
malware. Nevertheless, as mentioned by the authors, this model does not take into account patching and therefore there is no 
transition from susceptible to immunised. 

Typically, disease spreading depends on common shared characteristics of the individuals in a population. In a network of 
computers, malware exploits certain vulnerabilities in the system in order to infect a host [33]. Common practice of malware is 
to exploit vulnerabilities in software that is installed in the victim-host. Thus, in order for a host to be considered as susceptible to 
a certain piece of malware, it must have installed the specific software version that bears the vulnerability that the malware can 
exploit. Otherwise, it cannot be infected and thus cannot be considered as susceptible. In the real world, not every host in a 
network carries the same vulnerabilities, forming therefore a heterogeneous computer network. This heterogeneity can be 
considered as an additional compartment of immune nodes. Our work has also taken into account the transition to this 
compartment from the susceptible or recovered state through the application of patching. 

 



6 CONCLUSIONS 
In this paper, we have integrated game theory premises with virus proliferation models to develop a cost-benefit approach to 

evaluate defence strategies that mitigate malware proliferation. We demonstrate the application of our approach, which is based 
on the combination of game theory and established epidemiology models, with a case study focusing on minimising the effect of 
random scanning worms (such as Code-Red worm) infecting a network of susceptible hosts. In the scenario both the defender 
and the attacker can choose among a variety of strategies in order to achieve their goals. The results of the case study highlight 
that the cost of security restricts the security level of the defender, since the resulted optimal strategy does not correspond to 
the most secure one. An interesting extension of this work could be the introduction of a security level threshold in the game 
eliminating the strategies that correspond to gains that do not meet the defender’s requirements. In addition, applying the model 
against other worms and other strategies should produce different, but interesting results, but this falls outside the scope of this 
paper. 

Game theory, under traditional malware proliferation approaches makes those models a useful tool for the efficient and 
effective protection of networks. We have identified the need to incorporate topology oriented malware, such as malware that 
spread through social media or emails, that spread more efficiently within networks. The logic behind this will be the same, a 
topology oriented malware dissemination model will feed our game with the necessary parameters, while the latter will return the 
optimal defence strategies. 
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