24 research outputs found

    Influence of Introduced Peregrine Falcons on the Distribution of Red Knots within a Spring Staging Site

    Get PDF
    Predator recovery driven by single-species management approaches may lead to conservation conflicts between recovered predators and prey species of conservation concern. As part of an aggressive recovery plan, the Eastern Peregrine Falcon Recovery Team released (1975–1985) 307 captive-reared peregrine falcons (Falco peregrinus) and successfully established a breeding population within the mid-Atlantic Coastal Plain, a physiographic region with no historic breeding population and a critical spring staging area for migratory shorebirds. We examined the influence of resident falcons on the distribution of foraging red knots during spring migration. We conducted weekly aerial surveys (2006–2009) along the Virginia barrier islands during the spring staging period (25 April– 6 June) to map foraging red knots (Calidris canutus) and evaluated the influence of proximity (0–3, 3–6, \u3e6 km) of beaches to active peregrine falcon nests on knot density (birds/km). Accumulated use of beaches throughout the season by red knots was significantly influenced by proximity of beaches to active falcon nests such that mean density was more than 6 fold higher on beaches that were \u3e6 km compared to beaches that were only 0–3 km from active eyries. Whether or not an eyrie was used in a given year had a significant influence on the use of associated close (0–3 km) beaches. From 6.5 to 64 fold more knots used beaches when associated eyries were not active compared to when they were active depending on the specific site. Historically, red knots and other migratory shorebirds would have enjoyed a peregrine-free zone within this critical staging site. The establishment of a dense breeding population of falcons within the area represents a new hazard for the knot population

    Genome-Wide Association and Trans-ethnic Meta-Analysis for Advanced Diabetic Kidney Disease: Family Investigation of Nephropathy and Diabetes (FIND)

    Get PDF
    Diabetic kidney disease (DKD) is the most common etiology of chronic kidney disease (CKD) in the industrialized world and accounts for much of the excess mortality in patients with diabetes mellitus. Approximately 45% of U.S. patients with incident end-stage kidney disease (ESKD) have DKD. Independent of glycemic control, DKD aggregates in families and has higher incidence rates in African, Mexican, and American Indian ancestral groups relative to European populations. The Family Investigation of Nephropathy and Diabetes (FIND) performed a genome-wide association study (GWAS) contrasting 6,197 unrelated individuals with advanced DKD with healthy and diabetic individuals lacking nephropathy of European American, African American, Mexican American, or American Indian ancestry. A large-scale replication and trans-ethnic meta-analysis included 7,539 additional European American, African American and American Indian DKD cases and non-nephropathy controls. Within ethnic group meta-analysis of discovery GWAS and replication set results identified genome-wide significant evidence for association between DKD and rs12523822 on chromosome 6q25.2 in American Indians (P = 5.74x10-9). The strongest signal of association in the trans-ethnic meta-analysis was with a SNP in strong linkage disequilibrium with rs12523822 (rs955333; P = 1.31x10-8), with directionally consistent results across ethnic groups. These 6q25.2 SNPs are located between the SCAF8 and CNKSR3 genes, a region with DKD relevant changes in gene expression and an eQTL with IPCEF1, a gene co-translated with CNKSR3. Several other SNPs demonstrated suggestive evidence of association with DKD, within and across populations. These data identify a novel DKD susceptibility locus with consistent directions of effect across diverse ancestral groups and provide insight into the genetic architecture of DKD

    Influence of introduced peregrine falcons on the distribution of red knots within a spring staging site.

    No full text
    Predator recovery driven by single-species management approaches may lead to conservation conflicts between recovered predators and prey species of conservation concern. As part of an aggressive recovery plan, the Eastern Peregrine Falcon Recovery Team released (1975-1985) 307 captive-reared peregrine falcons (Falco peregrinus) and successfully established a breeding population within the mid-Atlantic Coastal Plain, a physiographic region with no historic breeding population and a critical spring staging area for migratory shorebirds. We examined the influence of resident falcons on the distribution of foraging red knots during spring migration. We conducted weekly aerial surveys (2006-2009) along the Virginia barrier islands during the spring staging period (25 April- 6 June) to map foraging red knots (Calidris canutus) and evaluated the influence of proximity (0-3, 3-6, >6 km) of beaches to active peregrine falcon nests on knot density (birds/km). Accumulated use of beaches throughout the season by red knots was significantly influenced by proximity of beaches to active falcon nests such that mean density was more than 6 fold higher on beaches that were >6 km compared to beaches that were only 0-3 km from active eyries. Whether or not an eyrie was used in a given year had a significant influence on the use of associated close (0-3 km) beaches. From 6.5 to 64 fold more knots used beaches when associated eyries were not active compared to when they were active depending on the specific site. Historically, red knots and other migratory shorebirds would have enjoyed a peregrine-free zone within this critical staging site. The establishment of a dense breeding population of falcons within the area represents a new hazard for the knot population

    Factors that affect migratory Western Atlantic red knots (Calidris canutus rufa) and their prey during spring staging on Virginia's barrier islands.

    No full text
    Understanding factors that influence a species' distribution and abundance across the annual cycle is required for range-wide conservation. Thousands of imperiled red knots (Calidris cantus rufa) stop on Virginia's barrier islands each year to replenish fat during spring migration. We investigated the variation in red knot presence and flock size, the effects of prey on this variation, and factors influencing prey abundance on Virginia's barrier islands. We counted red knots and collected potential prey samples at randomly selected sites from 2007-2018 during a two-week period during early and peak migration. Core samples contained crustaceans (Orders Amphipoda and Calanoida), blue mussels (Mytilus edulis), coquina clams (Donax variabilis), and miscellaneous prey (horseshoe crab eggs (Limulus polyphemus), angel wing clams (Cyrtopleura costata), and other organisms (e.g., insect larvae, snails, worms)). Estimated red knot peak counts in Virginia during 21-27 May were highest in 2012 (11,959) and lowest in 2014 (2,857; 12-year peak migration [Formula: see text] = 7,175, SD = 2,869). Red knot and prey numbers varied across sampling periods and substrates (i.e., peat and sand). Red knots generally used sites with more prey. Miscellaneous prey ([Formula: see text] = 2401.00/m2, SE = 169.16) influenced red knot presence at a site early in migration, when we only sampled on peat banks. Coquina clams ([Formula: see text] = 1383.54/m2, SE = 125.32) and blue mussels ([Formula: see text] = 777.91/m2, SE = 259.31) affected red knot presence at a site during peak migration, when we sampled both substrates. Few relationships between prey and red knot flock size existed, suggesting that other unmeasured factors determined red knot numbers at occupied sites. Tide and mean daily water temperature affected prey abundance. Maximizing the diversity, availability, and abundance of prey for red knots on barrier islands requires management that encourages the presence of both sand and peat bank intertidal habitats

    Bacterial Toxins

    No full text
    corecore