71 research outputs found

    VULGARISATION DES OBJECTIFS ET DES RESULTATS DU PROJET RUSSADE ET SENSIBILISATION DES COMMUNAUTES SUR LES ENJEUX DE LA SECURITE ALIMENTAIRE ET DE LA DURABILITE ENVIRONNEMENTALE

    Get PDF
    The overall objective of the RUSSADE project (Network of Sahelian Universities for Food Security and Environmental Sustainability) is to support and strengthen the capacities of higher education institutions, improving food security while reducing the environmental impact; however the ultimate goal is to contribute to wellbeing of the very poorest people. To improve the visibility and effectiveness of the project, several actions have been carried out to contribute the understanding of the problems and challenges of the development. Therefore, the project objectives and its multidisciplinary approach have been illustrated during conferences, congress and conventions.Since the education might contribute to foster food security and ethic of sustainability, schools were engaged in various activities. Because many primary schools do not have adequate water facilities and they lack of adequate sanitation, actions have been taken to raise the importance of awareness and training of hygiene education to improve health, life expectancy, gender equality and poverty reduction. The training also covered the proper nutrition and the implementation of kitchen gardens in schools. In total, about 500 people have been trained, including teachers, schoolchildren and parents.The expected result is a changed behaviour of children which could be drive to a different adults’ life style

    Unveiling diffusion pattern and structural impact of the most invasive SARS-CoV-2 spike mutation

    No full text
    SARS-CoV-2 epidemics quickly propagated worldwide, sorting virus genomic variants in newly established propagules of infections. Stochasticity in transmission within and between countries or an actual selective advantage could explain the global high frequency reached by some genomic variants. Using statistical analyses, demographic reconstructions, and molecular dynamics simulations, we show that the globally invasive G614 spike variant i) underwent a significant demographic expansion in most countries not explained by stochastic effects nor by overrepresentation in clinical samples; ii) increases the spike S1/S2 furin-like site conformational plasticity (short-range effect), and iii) modifies the internal motion of the receptor-binding domain affecting its cross-connection with other functional domains (long-range effect). Our results support the hypothesis of a selective advantage at the basis of the spread of the G614 variant, which we suggest may be due to structural modification of the spike protein at the S1/S2 proteolytic site, and provides structural information to guide the design of variant-specific drugs

    Survival and divergence in a small group: The extraordinary genomic history of the endangered Apennine brown bear stragglers

    Get PDF
    About 100 km east of Rome, in the central Apennine Mountains, a critically endangered population of ∼50 brown bears live in complete isolation. Mating outside this population is prevented by several 100 km of bear-free territories. We exploited this natural experiment to better understand the gene and genomic consequences of surviving at extremely small population size. We found that brown bear populations in Europe lost connectivity since Neolithic times, when farming communities expanded and forest burning was used for land clearance. In central Italy, this resulted in a 40-fold population decline. The overall genomic impact of this decline included the complete loss of variation in the mitochondrial genome and along long stretches of the nuclear genome. Several private and deleterious amino acid changes were fixed by random drift; predicted effects include energy deficit, muscle weakness, anomalies in cranial and skeletal development, and reduced aggressiveness. Despite this extreme loss of diversity, Apennine bear genomes show nonrandom peaks of high variation, possibly maintained by balancing selection, at genomic regions significantly enriched for genes associated with immune and olfactory systems. Challenging the paradigm of increased extinction risk in small populations, we suggest that random fixation of deleterious alleles (i) can be an important driver of divergence in isolation, (ii) can be tolerated when balancing selection prevents random loss of variation at important genes, and (iii) is followed by or results directly in favorable behavioral changes

    SARS-CoV-2 multi-variant rapid detector based on graphene transistor functionalized with an engineered dimeric ACE2 receptor

    Get PDF
    Reliable point-of-care (POC) rapid tests are crucial to detect infection and contain the spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The emergence of several variants of concern (VOC) can reduce binding affinity to diagnostic antibodies, limiting the efficacy of the currently adopted tests, while showing unaltered or increased affinity for the host receptor, angiotensin converting enzyme 2 (ACE2). We present a graphene field-effect transistor (gFET) biosensor design, which exploits the Spike-ACE2 interaction, the crucial step for SARS-CoV-2 infection. Extensive computational analyses show that a chimeric ACE2-Fragment crystallizable (ACE2-Fc) construct mimics the native receptor dimeric conformation. ACE2-Fc functionalized gFET allows in vitro detection of the trimeric Spike protein, outperforming functionalization with a diagnostic antibody or with the soluble ACE2 portion, resulting in a sensitivity of 20 pg/mL. Our miniaturized POC biosensor successfully detects B.1.610 (pre-VOC), Alpha, Beta, Gamma, Delta, Omicron (i.e., BA.1, BA.2, BA.4, BA.5, BA.2.75 and BQ.1) variants in isolated viruses and patient's clinical nasopharyngeal swabs. The biosensor reached a Limit Of Detection (LOD) of 65 cps/mL in swab specimens of Omicron BA.5. Our approach paves the way for a new and reusable class of highly sensitive, rapid and variant-robust SARS-CoV-2 detection systems
    • …
    corecore