1,823 research outputs found
Psycho-physical theatre practice as embodied learning for young people with learning disabilities
In a dominant Western tradition that reveres cerebral learning, embodied learning approaches have received limited research attention – and less in education than other disciplines. This paper draws on previously reported empirical data from a five-year Creative Partnerships study to argue that psycho-physical theatre practice can promote embodied cognition, has particular value for young people with learning disabilities in special schools and has potential for inclusive education in mainstream schools. The paper describes a psycho-physical actor training process developed with, and for, actors with learning disabilities. Its application within special educational contexts, which we call ‘mimetics’, has focused more keenly upon physicalised interaction as the core communication. In this form of communication, reading, interpreting and responding to the individuality of others happen through the development of non-verbal dialogue. This focus has illuminated the importance of an intuited or ‘felt’ understanding which is generated by and recognises such communications. In special education settings, being different is inherent, and physicalised interaction more routine, so ways of working different from the mainstream are required. The paper suggests that such settings are rich sites for research to develop, value and recognise the significance of embodied cognition and realise its potential for special and inclusive education
Presence of an expressed 13-tubulin gene (TUBB) in the HLA class I region may provide the genetic basis for HLA-linked microtubule dysfunction
An expressed beta-tubulin gene (TUBB) has previously
been localized to chromosome region 6pter-p21
in man. By using a panel of deletion mutant cell lines and
radiation-reduced hybrids containing fragments of chromosome
6, the TUBB locus could be mapped to the HLA
class I region at 6p21.3. A long range restriction map including
TUBB and several HLA class I genes was then
generated by rotating field gel electrophoresis. The results
show that TUBB maps to a segment 170-370 kb telomeric
of HLA-C. This location suggests that a mutation at the
TUBB locus could be the cause for certain forms of HLAlinked
microtubule dysfunction, including immotile cilia
syndrome
Recommended from our members
Peptide binding characteristics of the non-classical class Ib MHC molecule HLA-E assessed by a recombinant random peptide approach.
BACKGROUND: Increasing evidence suggests that the effect of HLA-E on Natural Killer (NK) cell activity can be affected by the nature of the peptides bound to this non-classical, MHC class Ib molecule. However, its reduced cell surface expression, and until recently, the lack of specific monoclonal antibodies hinder studying the peptide-binding specificity HLA-E. RESULTS: An in vitro refolding system was used to assess binding of recombinant HLA-E to either specific peptides or a nonamer random peptide library. Peptides eluted from HLA-E molecules refolded around the nonamer library were then used to determine a binding motif for HLA-E. Hydrophobic and non-charged amino acids were found to predominate along the peptide motif, with a leucine anchor at P9, but surprisingly there was no methionine preference at P2, as suggested by previous studies. CONCLUSIONS: Compared to the results obtained with rat classical class Ia MHC molecules, RT1-A1c and RT1-Au, HLA-E appears to refold around a random peptide library to reduced but detectable levels, suggesting that this molecule's specificity is tight but probably not as exquisite as has been previously suggested. This, and a previous report that it can associate with synthetic peptides carrying a viral sequence, suggests that HLA-E, similar to its mouse counterpart (Qa-1b), could possibly bind peptides different from MHC class I leader peptides and present them to T lymphocytes.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
MDM2 overexpression is rare in Ovarian Carcinoma irrespective of TP53 mutation status
Somatic mutations in TP53 are seen in many human cancers. In addition, the protein product of the wild-type TP53 can be sequestered by the protein MDM2 (murine double minute 2). This protein is commonly overexpressed in human sarcomas and gliomas, usually as a result of gene amplification. In this study, 43 ovarian carcinomas (OCs) were analysed for aberrations in the TP53 gene by immunohistochemistry (IHC), loss of heterozygosity (LOH) or mutation analysis. The MDM2 gene and its product was studied by Southern blotting and IHC. Over 50% of the OCs studied showed mutations in TP53 by either direct sequencing (19/36, 53%), positive IHC (23,43, 53%) or both, whereas 0/32 had amplification of MDM2 and only 1/37 tumours had positive IHC using the anti-MDM2 antibody IF-2. The solitary example of positive IHC in this series was seen in a mixed müllerian tumour with sarcomatous differentiation and was not accompanied by MDM2 DNA amplification. These results support previous data showing that around 50% of OCs have mutations in TP53 and in addition, suggest that MDM2 is not amplified in OC, but the presence of sarcomatous features in mixed müllerian tumours may result in positive immunohistochemistry with IF-2
Recommended from our members
The inhibitory receptor LILRB4 (ILT3) modulates antigen presenting cell phenotype and, along with LILRB2 (ILT4), is upregulated in response to Salmonella infection.
BACKGROUND: Leukocyte Ig-like receptors (LILR) are a family of innate immune receptors with immunomodulatory functions. High-level expression of the receptors LILRB2 (ILT4) and LILRB4 (ILT3) is a feature of tolerogenic antigen presenting cells and has been observed in cancer and transplant situations. There are relatively few studies regarding these receptors in the context of infection and it is not yet clear how LILRB4 exerts its inhibitory effects. RESULTS: We studied the effects of LILRB4 ligation on antigen presenting cell phenotype, and the expression of LILRB2 and LILRB4 on Salmonella-infected antigen presenting cells. Ligation of LILRB4 throughout in vitro culture of dendritic cells led to an upregulation of the co-stimulatory protein CD86. Alterations in the production of IL-8 and IL-10 by LILRB4-ligated macrophages were also observed. Infection with Salmonella typhimurium or TLR stimulation with Salmonella components led to an upregulation of LILRB2 and LILRB4. CONCLUSION: Our results indicate that the inhibitory effects of LILRB4 do not result from a failure to upregulate co-stimulatory proteins. In addition to the high level expression that can render antigen presenting cells tolerogenic, there may be a role for lower level expression and activity of LILRB2 and LILRB4 in response to TLR signalling during an immune response to bacterial infection.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
Killer-cell Immunoglobulin-like Receptor gene linkage and copy number variation analysis by droplet digital PCR.
The Killer-cell Immunoglobulin-like Receptor (KIR) gene complex has considerable biomedical importance. Patterns of polymorphism in the KIR region include variability in the gene content of haplotypes and diverse structural arrangements. Droplet digital PCR (ddPCR) was used to identify different haplotype motifs and to enumerate KIR copy number variants (CNVs). ddPCR detected a variety of KIR haplotype configurations in DNA from well-characterized cell lines. Mendelian segregation of ddPCR-estimated KIR2DL5 CNVs was observed in Gambian families and CNV typing of other KIRs was shown to be accurate when compared to an established quantitative PCR method
Direct evidence for a functional role of HLA-DRB1 and -DRB3 gene products in the recognition of Dermatophagoides spp. (house dust mite) by helper T lymphocytes
The contribution of the HLA-DRB1, -B3, and -BS gene products in the recognition of Dermatophagoides spp. (house dust mite) by helper T cells Isolated from an atopic individual (HLA-DRw12, DR7; DRw52b) with perennial rhinitis was investigated. Using a panel of histocompatlble and histoincompatible accessory cells, the restriction specificity obtained for a long term T cell suggested that a component of the dust mite reactive repertoire recognized antigen in association with DRB3 gene products. Ollgonucleotide DNA typing of the presenting cell panel demonstrated a correlation between the DRw52b allele and T cell responsiveness. Murine fibroblasts expressing DRw52b, but not DRw52a or -c molecules, presented antigen to both the T cell line and cloned T cells (DE26) derived from the line, Indicating that the supertypic specificity DRw52b was able to restrict recognition of dust mite antigens. Additional T cell clones (DE9 and DE41) also isolated from the line were restricted by the products of the B1 gene locus (DRw12B1) as determined by murine fibroblasts transfected with the appropriate HLA-DR genes. Clone DE9 was degenerate in Its restriction specificity, also recognizing dust mite presented by accessory cells expressing the DR2 subtypes. Presentation by fibroblasts transfected with DRw12B1, DR2Dw2B5 genes and EBV-transformed B cell lines expressing DR2Dw21B1 and -B5 indicated that the functional site restricting recognition may be associated with residues 70 and 71 of the DR/3 chain helical wall of the antigen combining site. Furthermore, we have recently demonstrated that both T cell clones DE9 and DE26 induce allergen dependent IgE synthesis in vitro. Thus these results demonstrate directly that the DRB1, -B3, and -B5 gene products are functional in the restriction of T cell recognition of dust mite antigen
Systematic genetic analysis of the MHC region reveals mechanistic underpinnings of HLA type associations with disease.
The MHC region is highly associated with autoimmune and infectious diseases. Here we conduct an in-depth interrogation of associations between genetic variation, gene expression and disease. We create a comprehensive map of regulatory variation in the MHC region using WGS from 419 individuals to call eight-digit HLA types and RNA-seq data from matched iPSCs. Building on this regulatory map, we explored GWAS signals for 4083 traits, detecting colocalization for 180 disease loci with eQTLs. We show that eQTL analyses taking HLA type haplotypes into account have substantially greater power compared with only using single variants. We examined the association between the 8.1 ancestral haplotype and delayed colonization in Cystic Fibrosis, postulating that downregulation of RNF5 expression is the likely causal mechanism. Our study provides insights into the genetic architecture of the MHC region and pinpoints disease associations that are due to differential expression of HLA genes and non-HLA genes
qKAT: a high-throughput qPCR method for KIR gene copy number and haplotype determination.
Killer cell immunoglobulin-like receptors (KIRs), expressed on natural killer cells and T cells, have considerable biomedical relevance playing significant roles in immunity, pregnancy and transplantation. The KIR locus is one of the most complex and polymorphic regions of the human genome. Extensive sequence homology and copy number variation makes KIRs technically laborious and expensive to type. To aid the investigation of KIRs in human disease we developed a high-throughput, multiplex real-time polymerase chain reaction method to determine gene copy number for each KIR locus. We used reference DNA samples to validate the accuracy and a cohort of 1698 individuals to evaluate capability for precise copy number discrimination. The method provides improved information and identifies KIR haplotype alterations that were not previously visible using other approaches.This work was funded by the Medical Research Council (MRC) and the Wellcome Trust with partial funding from the National Institute of Health (NIH) Cambridge Biomedical Research Centre and NIH Research Blood and Transplant Research Unit (NIHR BTRU) in Organ Donation and Transplantation at the University of Cambridge in collaboration with Newcastle University and in partnership with NHS Blood and Transplant (NHSBT)
- …
