39 research outputs found

    Nonlocal Phases of Local Quantum Mechanical Wavefunctions in Static and Time-Dependent Aharonov-Bohm Experiments

    Full text link
    We show that the standard Dirac phase factor is not the only solution of the gauge transformation equations. The full form of a general gauge function (that connects systems that move in different sets of scalar and vector potentials), apart from Dirac phases also contains terms of classical fields that act nonlocally (in spacetime) on the local solutions of the time-dependent Schr\"odinger equation: the phases of wavefunctions in the Schr\"odinger picture are affected nonlocally by spatially and temporally remote magnetic and electric fields, in ways that are fully explored. These contributions go beyond the usual Aharonov-Bohm effects (magnetic or electric). (i) Application to cases of particles passing through static magnetic or electric fields leads to cancellations of Aharonov-Bohm phases at the observation point; these are linked to behaviors at the semiclassical level (to the old Werner & Brill experimental observations, or their "electric analogs" - or to recent reports of Batelaan & Tonomura) but are shown to be far more general (true not only for narrow wavepackets but also for completely delocalized quantum states). By using these cancellations, certain previously unnoticed sign-errors in the literature are corrected. (ii) Application to time-dependent situations provides a remedy for erroneous results in the literature (on improper uses of Dirac phase factors) and leads to phases that contain an Aharonov-Bohm part and a field-nonlocal part: their competition is shown to recover Relativistic Causality in earlier "paradoxes" (such as the van Kampen thought-experiment), while a more general consideration indicates that the temporal nonlocalities found here demonstrate in part a causal propagation of phases of quantum mechanical wavefunctions in the Schr\"odinger picture. This may open a direct way to address time-dependent double-slit experiments and the associated causal issuesComment: 49 pages, 1 figure, presented in Conferences "50 years of the Aharonov-Bohm effect and 25 years of the Berry's phase" (Tel Aviv and Bristol), published in Journ. Phys. A. Compared to the published paper, this version has 17 additional lines after eqn.(14) for maximum clarity, and the Abstract has been slightly modified and reduced from the published 2035 characters to the required 1920 character

    Dynamical moment of inertia and quadrupole vibrations in rotating nuclei

    Get PDF
    The contribution of quantum shape fluctuations to inertial properties of rotating nuclei has been analysed within the self-consistent one-dimensional cranking oscillator model. It is shown that in even-even nuclei the dynamical moment of inertia calculated in the mean field approximation is equivalent to the Thouless-Valatin moment of inertia calculated in the random phase approximation if and only if the self-consistent conditions for the mean field are fulfilled.Comment: 4 pages, 2 figure

    Tilted Rotation and Wobbling Motion in Nuclei

    Get PDF
    The self-consistent harmonic oscillator model including the three-dimensional cranking term is extended to describe collective excitations in the random phase approximation. It is found that quadrupole collective excitations associated with wobbling motion in rotating nuclei lead to the appearance of two- or three-dimensional rotation.Comment: 9 pages, 2 Postscript figures, corrected typo

    Quadrupole correlations and inertial properties of rotating nuclei

    Get PDF
    The contribution of quantum shape fluctuations to inertial properties of rotating nuclei has been analyzed for QQ-nuclear interaction using the random phase approximation (RPA). The different recipes to treat the cranking mean field plus RPA problem are considered. The effects of the dN=2 quadrupole matrix elements and the role of the volume conservation condition are discussed.Comment: 14 pages, 7 figures, To be published in J. Phys. G: Nucl. Phy

    Superdeformed rotational bands in the Mercury region; A Cranked Skyrme-Hartree-Fock-Bogoliubov study

    Get PDF
    A study of rotational properties of the ground superdeformed bands in \Hg{0}, \Hg{2}, \Hg{4}, and \Pb{4} is presented. We use the cranked Hartree-Fock-Bogoliubov method with the {\skm} parametrization of the Skyrme force in the particle-hole channel and a seniority interaction in the pairing channel. An approximate particle number projection is performed by means of the Lipkin-Nogami prescription. We analyze the proton and neutron quasiparticle routhians in connection with the present information on about thirty presently observed superdeformed bands in nuclei close neighbours of \Hg{2}.Comment: 26 LaTeX pages, 14 uuencoded postscript figures included, Preprint IPN-TH 93-6

    Effective monitoring of freshwater fish

    Get PDF
    Freshwater ecosystems constitute only a small fraction of the planet’s water resources, yet support much of its diversity, with freshwater fish accounting for more species than birds, mammals, amphibians, or reptiles. Fresh waters are, however, particularly vulnerable to anthropogenic impacts, including habitat loss, climate and land use change, nutrient enrichment, and biological invasions. This environmental degradation, combined with unprecedented rates of biodiversity change, highlights the importance of robust and replicable programmes to monitor freshwater fish assemblages. Such monitoring programmes can have diverse aims, including confirming the presence of a single species (e.g. early detection of alien species), tracking changes in the abundance of threatened species, or documenting long-term temporal changes in entire communities. Irrespective of their motivation, monitoring programmes are only fit for purpose if they have clearly articulated aims and collect data that can meet those aims. This review, therefore, highlights the importance of identifying the key aims in monitoring programmes, and outlines the different methods of sampling freshwater fish that can be used to meet these aims. We emphasise that investigators must address issues around sampling design, statistical power, species’ detectability, taxonomy, and ethics in their monitoring programmes. Additionally, programmes must ensure that high-quality monitoring data are properly curated and deposited in repositories that will endure. Through fostering improved practice in freshwater fish monitoring, this review aims to help programmes improve understanding of the processes that shape the Earth's freshwater ecosystems, and help protect these systems in face of rapid environmental change
    corecore