157 research outputs found

    The cultural parameters of lead poisoning: a medical anthropologist's view of intervention in environmental lead exposure.

    Get PDF
    This article identifies four culturally shaped sources of lead exposure in human societies: modern and historic technological sources: food habits; culturally defined health beliefs; and beauty practices. Examples of these potential sources of lead poisoning are presented from current cultures. They include the use of lead-glazed cooking pottery in Mexican-American households; folk medical use of lead in Hispanic, Arabic, South Asian, Chinese, and Hmong communities; as well as the use of lead as a cosmetic in the Near East, Southeast Asia, and South Asia. Four interacting cultural conditions that create barriers to the reduction of lead exposure and lead poisoning are identified and discussed. These are knowledge deficiencies, communication resistance, cultural reinterpretations, and incongruity of explanatory models

    Phage Orf family recombinases:conservation of activities and involvement of the central channel in DNA binding

    Get PDF
    Genetic and biochemical evidence suggests that λ Orf is a recombination mediator, promoting nucleation of either bacterial RecA or phage Redβ recombinases onto single-stranded DNA (ssDNA) bound by SSB protein. We have identified a diverse family of Orf proteins that includes representatives implicated in DNA base flipping and those fused to an HNH endonuclease domain. To confirm a functional relationship with the Orf family, a distantly-related homolog, YbcN, from Escherichia coli cryptic prophage DLP12 was purified and characterized. As with its λ relative, YbcN showed a preference for binding ssDNA over duplex. Neither Orf nor YbcN displayed a significant preference for duplex DNA containing mismatches or 1-3 nucleotide bulges. YbcN also bound E. coli SSB, although unlike Orf, it failed to associate with an SSB mutant lacking the flexible C-terminal tail involved in coordinating heterologous protein-protein interactions. Residues conserved in the Orf family that flank the central cavity in the λ Orf crystal structure were targeted for mutagenesis to help determine the mode of DNA binding. Several of these mutant proteins showed significant defects in DNA binding consistent with the central aperture being important for substrate recognition. The widespread conservation of Orf-like proteins highlights the importance of targeting SSB coated ssDNA during lambdoid phage recombination

    AKAP350, a Multiply Spliced Protein Kinase A-anchoring Protein Associated with Centrosomes

    Get PDF
    Protein kinase A-anchoring proteins (AKAPs) localize the second messenger response to particular subcellular domains by sequestration of the type II protein kinase A. Previously, AKAP120 was identified from a rabbit gastric parietal cell cDNA library; however, a monoclonal antibody raised against AKAP120 labeled a 350-kDa band in Western blots of parietal cell cytosol. Recloning has now revealed that AKAP120 is a segment of a larger protein, AKAP350. We have now obtained a complete sequence of human gastric AKAP350 as well as partial cDNA sequences from human lung and rabbit parietal cells. The genomic region containing AKAP350 is found on chromosome 7q21 and is multiply spliced, producing at least three distinct AKAP350 isoforms as well as yotiao, a protein associated with the N-methyl-D-aspartate receptor. Rabbit parietal cell AKAP350 is missing a sequence corresponding to a single exon in the middle of the molecule located just after the yotiao homology region. Two carboxyl-terminal splice variants were also identified. Both of the major splice variants showed tissue- and cell-specific expression patterns. Immunofluorescence microscopy demonstrated that AKAP350 was associated with centrosomes in many cell types. In polarized Madin-Darby canine kidney cells, AKAP350 localized asymmetrically to one pole of the centrosome, and nocodazole did not alter its localization. During the cell cycle, AKAP350 was associated with the centrosomes as well as with the cleavage furrow during anaphase and telophase. Several epithelial cell types also demonstrated noncentrosomal pools of AKAP350, especially parietal cells, which contained multiple cytosolic immunoreactive foci throughout the cells. The localization of AKAP350 suggests that it may regulate centrosomal and noncentrosomal cytoskeletal systems in many different cell types

    A deep learning approach to photo–identification demonstrates high performance on two dozen cetacean species

    Get PDF
    We thank the countless individuals who collected and/or processed the nearly 85,000 images used in this study and those who assisted, particularly those who sorted these images from the millions that did not end up in the catalogues. Additionally, we thank the other Kaggle competitors who helped develop the ideas, models and data used here, particularly those who released their datasets to the public. The graduate assistantship for Philip T. Patton was funded by the NOAA Fisheries QUEST Fellowship. This paper represents HIMB and SOEST contribution numbers 1932 and 11679, respectively. The technical support and advanced computing resources from University of Hawaii Information Technology Services—Cyberinfrastructure, funded in part by the National Science Foundation CC* awards # 2201428 and # 2232862 are gratefully acknowledged. Every photo–identification image was collected under permits according to relevant national guidelines, regulation and legislation.Peer reviewedPublisher PD

    KD5170, a novel mercaptoketone-based histone deacetylase inhibitor that exhibits broad spectrum antitumor activity in vitro and in vivo

    Get PDF
    Abstract Histone deacetylase (HDAC) inhibitors have garnered significant attention as cancer drugs. These therapeutic agents have recently been clinically validated with the market approval of vorinostat (SAHA, Zolinza) for treatment of cutaneous T-cell lymphoma. Like vorinostat, most of the small-molecule HDAC inhibitors in clinical development are hydroxamic acids, whose inhibitory activity stems from their ability to coordinate the catalytic Zn 2+ in the active site of HDACs. We sought to identify novel, nonhydroxamate-based HDAC inhibitors with potentially distinct pharmaceutical properties via an ultra-high throughput small molecule biochemical screen against the HDAC activity in a HeLa cell nuclear extract. An A-mercaptoketone series was identified and chemically optimized. The lead compound, KD5170, exhibits HDAC inhibitory activity with an IC 50 of 0.045 Mmol/L in the screening biochemical assay and an EC 50 of 0.025 Mmol/L in HeLa cell -based assays that monitor histone H3 acetylation. KD5170 also exhibits broad spectrum classe

    Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity.

    Get PDF
    Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant

    Allele-Specific HLA Loss and Immune Escape in Lung Cancer Evolution

    Get PDF
    Immune evasion is a hallmark of cancer. Losing the ability to present neoantigens through human leukocyte antigen (HLA) loss may facilitate immune evasion. However, the polymorphic nature of the locus has precluded accurate HLA copy-number analysis. Here, we present loss of heterozygosity in human leukocyte antigen (LOHHLA), a computational tool to determine HLA allele-specific copy number from sequencing data. Using LOHHLA, we find that HLA LOH occurs in 40% of non-small-cell lung cancers (NSCLCs) and is associated with a high subclonal neoantigen burden, APOBEC-mediated mutagenesis, upregulation of cytolytic activity, and PD-L1 positivity. The focal nature of HLA LOH alterations, their subclonal frequencies, enrichment in metastatic sites, and occurrence as parallel events suggests that HLA LOH is an immune escape mechanism that is subject to strong microenvironmental selection pressures later in tumor evolution. Characterizing HLA LOH with LOHHLA refines neoantigen prediction and may have implications for our understanding of resistance mechanisms and immunotherapeutic approaches targeting neoantigens. Video Abstract [Figure presented] Development of the bioinformatics tool LOHHLA allows precise measurement of allele-specific HLA copy number, improves the accuracy in neoantigen prediction, and uncovers insights into how immune escape contributes to tumor evolution in non-small-cell lung cancer
    corecore