5,867 research outputs found

    Data Compression System with a Minimum Time Delay Unit-Patent

    Get PDF
    Minimum time delay unit for conventional time multiplexed data compression channel

    Photosynthetic reaction center complexes from heliobacteria

    Get PDF
    The goal of this project is to understand the early evolutionary development of photosynthesis by examining the properties of reaction centers isolated from certain contemporary organisms that appear to contain the simplest photosynthetic reaction centers. The major focus of this project is the family of newly discovered strictly anaerobic photosynthetic organisms known as Heliobacteria. These organisms are the only known photosynthetic organisms that are grouped with the gram-positive phylum of bacteria. The properties of these reaction centers suggest that they might be the decendants of an ancestor that also gave rise to Photosystem 1 found in oxygen-evolving photosynthetic organisms. Photoactive reaction center-core antenna complexes have been isolated from the photosynthetic bacteria Heliobacillus mobilis and Heliobacterium gestii. The absorption and fluorescence properties of membranes and reaction centers are almost identical, suggesting that a single pigment-protein complex serves as both antenna and reaction center. Experiments in progress include sequence determination of the 48,000 Mr reaction center protein, and evolutionary comparisons with other reaction center proteins

    Confirming the existence of π-allyl-palladium intermediates during the reaction of meta photocycloadducts with palladium(ii) compounds

    Get PDF
    The transient existence of π-allyl-palladium intermediates formed by the reaction of Pd(OAc)2 and anisole-derived meta photocycloadducts has been demonstrated using NMR techniques. The intermediates tended to be short-lived and underwent rapid reductive elimination of palladium metal to form allylic acetates, however this degradation process could be delayed by changing the reaction solvent from acetonitrile to chloroform

    SUBCHANFLOW sensitivity analysis with URANIE

    Get PDF

    KIT activities using CTF within NURESAGE project

    Get PDF

    Diffusion and Atomic Hopping of N Atoms on Ru(0001) Studied by Scanning Tunneling Microscopy

    Get PDF
    The dynamic behavior of N atoms adsorbed on a Ru(0001) surface was studied by scanning tunneling microscopy. N atoms formed by dissociation of NO molecules show an initial sharp concentration profile at atomic steps. Its decay was followed as a function of time, providing a quasicontinuum diffusion constant; the activation energy is 0.94 eV and the prefactor is 2×10−2cm2s−1. The diffusion constant was determined also at equilibrium, from statistical jumps of individual N atoms in a uniform overlayer, and is found to be identical to the Fickian value

    Adsorbate-adsorbate interactions from statistical analysis of STM images: N/Ru(0001)

    Get PDF
    Atomic nitrogen on Ru(0001) was prepared by dissociative chemisorption of N2 and studied by scanning tunneling microscopy (STM) at 300 K. Nitrogen occupies the hcp threefold hollow site and is imaged as a depression with a diameter of about 5 Å. Interactions between the adsorbed nitrogen atoms were obtained by statistical analysis of STM images, by extraction of the two-dimensional pair distribution function from the arrangement of the N atoms. Since the nearest-neighbor separations could be identified with atomic precision, the pair distribution function g and hence the potential of mean force Veff were obtained as a function of the discrete neighbor sites j up to the tenth nearest neighbor. A comparison with Monte Carlo calculations for balls with a hard-sphere potential provides information about the pair potential Vpair(j): The nearest-neighbor site is strongly repulsive, the second-neighbor site is weakly repulsive, and the third-neighbor site is weakly attractive. These findings rationalize the absence of island formation and of a well-ordered 2×2 phase for the N/Ru(0001) system: At temperatures ≥300 K the attractive interaction on the third-neighbor site is too weak, while at lower temperatures the diffusion barrier of 0.9 eV represents a kinetic obstacle. The fact that the range of the interaction is identical to the diameter of the N-atom features in the STM topographs is taken as evidence that the interaction is caused by substrate-mediated electronic forces

    Interaction of oxygen with Al(111) at elevated temperatures

    Get PDF
    The interaction of oxygen with Al(111) was investigated by STM at temperatures between 350 and 530 K, by annealing an oxygen precovered surface and by adsorption of oxygen on the hot surface. For exposures up to 10 L and temperatures up to 470 K a considerable part of the oxygen exists still in the chemisorbed state, another part transforms into Al oxide. In contrast to 300 K chemisorbed Oad atoms are mobile at elevated temperatures, and compact, hexagonal (1×1)Oad islands develop by an ordinary nucleation and growth scheme. This evidences attractive interactions between the oxygen atoms on (1×1) sites. From the lateral distribution of Oad islands a diffusion barrier of 1.0–1.1 eV is derived. The imaging of the islands of the (1×1) phase by STM depends on their size, which is understood by a different imaging of the Oad/Al adsorbate complexes at the island borders. Defects in the islands and bright features at the edges are interpreted as nuclei of aluminum oxide. Additional features which appear as topographic holes may be attributed to nonconducting Al oxide grains
    • …
    corecore