56 research outputs found

    PC-based instrumentation for electrodermal activity measurement

    Get PDF
    A PC-based EDA measuring system is presented. The system is composed of a laptop with a PCMCIA DAQ-card running LabVIEW® software, a small front-end with a dual op-amp IC and a few passive components, and three skin-surface electrodes. The electrode system gives a monopolar measurement below the measuring electrode regardless of the electrode sizes, unless very small. Usage of the system is demonstrated by measurements from a mental stress experiment on 17 volunteers. There was a significant correlation (R=0.51, p<0.001) between the self-assessed stress-level and the EDA response frequency. The system allows easy on-site customization in software of measuring parameters, signal-quality monitoring and non-linearity detection in real time. We believe that the most suited use for the system is for stationary experimental purposes where this flexibility is desired. The system is easy to reproduce by engineers interested in doing EDA researc

    An Investigation on Bilateral Asymmetry in Electrodermal Activity

    Get PDF
    The Multiple Arousal Theory (Picard et al., 2016) was proposed to explain retrospective observations of bilateral differences in electrodermal activities occurring in threat-related high-stake situations. The theory proposes different cortical and subcortical structures to be involved in the processing of various facets of emotional states. Systematic investigations of this effect are still scarce. This study tested the prediction of bilateral electrodermal effects in a controlled laboratory environment where electrodermal activity (EDA) was recorded bilaterally during normal activity and two stress-tasks in 25 healthy volunteers. A visual search stress task with a performance-related staircase algorithm was used, ensuring intersubjectively comparable stress levels across individuals. After completion of the task, a sense of ownership of an attractive price was created and loss aversion introduced to create a high-stake situation. Confirmation of the theory should satisfy the hypothesis of a bilateral difference in EDA between the dominant and non-dominant hand, which is larger during high-stake stressors than during low-stake stressors. The bilateral difference was quantified and compared statistically between the two stress-tasks, revealing no significant difference between them nor any significant difference between the stress tasks and the period of normal activity. Subgroup analysis of only the participants with maximum self-rating of their desire to win the price (n = 7) revealed neither any significant difference between the two tasks nor between the stress-tasks and the period of normal activity. Although the theory was not confirmed by this study, eight cases suggestive of bilateral difference within the recordings were identified and are presented. Because the study is limited in using one of several possible operationalizations of the phenomenon, it is not possible to draw a general conclusion on the theory. Nevertheless, the study might contribute to a better understanding and encourage systematic review and hypothesis development regarding this new theory. Possible explanations and suggestions for future pathways to systematically investigate the Multiple Arousal Theory are discussed

    Electrosurgery and Temperature Increase in Tissue With a Passive Metal Implant

    Get PDF
    Importance: During monopolar electrosurgery in patients, current paths can be influenced by metal implants, which can cause unintentional tissue heating in proximity to implants. Guidelines concerning electrosurgery and active implants such as pacemakers or implantable cardioverter defibrillators have been published, but most describe interference between electrosurgery and the active implant rather than the risk of unintended tissue heating. Tissue heating in proximity to implants during electrosurgery may cause an increased risk of patient injury.Objective: To determine the temperature of tissue close to metal implants during electrosurgery in an in-vitro model.Design, Setting, and Participants: Thirty tissue samples (15 with a metal implant placed in center, 15 controls without implant) were placed in an in vitro measurement chamber. Electrosurgery was applied at 5–60 W with the active electrode at three defined distances from the implant while temperatures at four defined distances from the implant were measured using fiber-optic sensors.Main Outcomes and Measures: Tissue temperature increase at the four tissue sites was determined for all power levels and each of the electrode-to-implant distances. Based on a linear mixed effects model analysis, the primary outcomes were the difference in temperature increase between implant and control tissue, and the estimated temperature increase per watt per minute.Results: Tissues with an implant had higher temperature increases than controls at all power levels after 1 min of applied electrosurgery (mean difference of 0.16°C at 5 W, 0.50°C at 15 W, 1.11°C at 30 W, and 2.22°C at 60 W, all with p &lt; 0.001). Temperature increase close to the implant was estimated to be 0.088°C/W/min (95% CI: 0.078–0.099°C/W/min; p &lt; 0.001). Temperature could increase to above 43°C after 1 min of 60 W. Active electrode position had no significant effect on temperature increases for tissues with implant (p = 0.6).Conclusions and Relevance: The temperature of tissue close to a metal implant increases with passing electrosurgery current. There is a significant risk of high tissue temperature when long activation times or high power levels are used

    Thioridazine inhibits autophagy and sensitizes glioblastoma cells to temozolomide

    Get PDF
    Glioblastoma multiforme (GBM) has a poor prognosis with an overall survival of 14–15 months after surgery, radiation and chemotherapy using temozolomide (TMZ). A major problem is that the tumors acquire resistance to therapy. In an effort to improve the therapeutic efficacy of TMZ, we performed a genome‐wide RNA interference (RNAi) synthetic lethality screen to establish a functional gene signature for TMZ sensitivity in human GBM cells. We then queried the Connectivity Map database to search for drugs that would induce corresponding changes in gene expression. By this approach we identified several potential pharmacological sensitizers to TMZ, where the most potent drug was the established antipsychotic agent Thioridazine, which significantly improved TMZ sensitivity while not demonstrating any significant toxicity alone. Mechanistically, we show that the specific chemosensitizing effect of Thioridazine is mediated by impairing autophagy, thereby preventing adaptive metabolic alterations associated with TMZ resistance. Moreover, we demonstrate that Thioridazine inhibits late‐stage autophagy by impairing fusion between autophagosomes and lysosomes. Finally, Thioridazine in combination with TMZ significantly inhibits brain tumor growth in vivo, demonstrating the potential clinical benefits of compounds targeting the autophagy‐lysosome pathway. Our study emphasizes the feasibility of exploiting drug repurposing for the design of novel therapeutic strategies for GBM.</p

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery
    corecore