293 research outputs found

    The thermal equation of state of FeTiO_3 ilmenite based on in situ X-ray diffraction at high pressures and temperatures

    Get PDF
    We present in situ measurements of the unit-cell volume of a natural terrestrial ilmenite (Jagersfontein mine, South Africa) and a synthetic reduced ilmenite (FeTiO_3) at simultaneous high pressure and high temperature up to 16 GPa and 1273 K. Unit-cell volumes were determined using energy-dispersive synchrotron X-ray diffraction in a multi-anvil press. Mössbauer analyses show that the synthetic sample contained insignificant amounts of Fe^(3+) both before and after the experiment. Results were fit to Birch-Murnaghan thermal equations of state, which reproduce the experimental data to within 0.5 and 0.7 GPa for the synthetic and natural samples, respectively. At ambient conditions, the unit-cell volume of the natural sample [V_0 = 314.75 ± 0.23 (1 ) Å^3] is significantly smaller than that of the synthetic sample [V_0 = 319.12 ± 0.26 Å^3]. The difference can be attributed to the presence of impurities and Fe^(3+) in the natural sample. The 1 bar isothermal bulk moduli K_(T0) for the reduced ilmenite is slightly larger than for the natural ilmenite (181 ± 7 and 165 ± 6 GPa, respectively), with pressure derivatives K_0' = 3 ± 1. Our results, combined with literature data, suggest that the unit-cell volume of reduced ilmenite is significantly larger than that of oxidized ilmenite, whereas their thermoelastic parameters are similar. Our data provide more appropriate input parameters for thermo-chemical models of lunar interior evolution, in which reduced ilmenite plays a critical role

    Guidelines of the French Society of Otorhinolaryngology (SFORL), short version. Extension assessment and principles of resection in cutaneous head and neck tumors

    Get PDF
    AbstractCutaneous head and neck tumors mainly comprise malignant melanoma, squamous cell carcinoma, trichoblastic carcinoma, Merkel cell carcinoma, adnexal carcinoma, dermatofibrosarcoma protuberans, sclerodermiform basalioma and angiosarcoma. Adapted management requires an experienced team with good knowledge of the various parameters relating to health status, histology, location and extension: risk factors for aggression, extension assessment, resection margin requirements, indications for specific procedures, such as lateral temporal bone resection, orbital exenteration, resection of the calvarium and meningeal envelopes, neck dissection and muscle resection

    Creation of periodical domain structure by local polarization reversal in planar waveguide produced by soft proton exchange in LiNbO3

    Get PDF
    The paper presents the results of an experimental study of the local polarization reversal and creation of domains by a biased tip of scanning probe microscope (SPM) in lithium niobate single crystals of congruent composition with a surface layer modified by soft proton exchange (SPE). The depth dependence of H+ ions concentration in the SPE-modified layer measured by confocal Raman microscopy demonstrates a sufficient composition gradient. The creation of isolated domains and stripe domain structures has been done by two switching modes: (1) point switching by field application in separated points and (2) line scanning switching by motion of the biased tip being in contact with the sample surface. For point switching for pulse durations less than 10s, the logarithmic dependence of the domain diameter on the pulse duration was observed. The change of the dependence to a linear one for pulse duration above 10s has been attributed to the transition from the stochastic step generation at the domain wall to the deterministic one at the domain vertexes. The periodical structure of stripe domains was created in SPE CLN planar waveguides by scanning at elevated temperature. The revealed switching regime suppresses electrostatic interaction of neighboring domains and leads to a significant improvement of the domain structure regularity. The creation of the stable periodical domain structure with submicron periods in SPE CLN planar waveguides was demonstrated. © 2023 The Author(s).Ministry of Education and Science of the Russian Federation, Minobrnauka; Ural Federal University, UrFU: 2968; Ministry of Science and Higher Education of the Russian Federation: 075-15-2021- 677The study was financially supported by the Ministry of Science and Higher Education of the Russian Federation within the Development Program of the Ural Federal University named after the first President of Russia, B. N. Yeltsin, in accordance with the program of strategic academic leadership "Priority-2030". The equipment of the Ural Center for Shared Use "Modern nanotechnology" at Ural Federal University (Reg. No. 2968), which is supported by the Ministry of Science and Higher Education RF (Project No. 075-15-2021- 677), was used

    Limited Increase of Particle Entrainment in the Off-Gas System of a Cold Crucible Induction Melter Compared with a Joule-Heated Metal Melter for HLLW Vitrification -11465

    Get PDF
    ABSTRACT Fission product solutions arising from reprocessing spent fuel from the nuclear reactors used for electrical production in France are immobilized in six vitrification lines at the AREVA La Hague plant. In 2010, the conventional Joule-heated metal melter was replaced in one of these six lines with a cold crucible melter. The cold crucible melter began vitrifying radioactive effluents produced by rinsing operations in legacy facilities in April 2010. The composition of these effluents requires a containment glass synthesis temperature that exceeds the operating temperatures limits of conventional ("hot") melters. The cold crucible melter technology has three main advantages: melt temperatures well above the current limit, increased glass production capacity, extended lifetime because of the lower wall temperatures. For these reasons the cold crucible melter can subsequently be used to vitrify a wide range of High-Level Liquid Waste (HLLW). This paper describes the assessment performed to characterize the entrainment of particles or chemicals and/or radioactive species to the off-gas treatment system from a Joule-heated metal melter (JHMM) and from a cold crucible induction melter (CCIM). Vitrification is performed in a two-step process. A calciner is used in each case to dry and calcine the high-level liquid waste, supplying only the dry residue to the melter together with glass frit. The off-gas treatment is identical for both melters. The paper first describes how the CEA uses its reconfigurable vitrification prototype, a full-scale mockup of a La Hague vitrification line, in support of AREVA to anticipate cold crucible melter operation under radioactive conditions. It describes the process equipment constituting the vitrification line from the melter (using a JHMM or a CCIM) to the off-gas treatment system. All the differences that contribute to the modification of radioactive particle entrainment from the calciner/melter to the off-gas treatment system are then described. The results obtained are then discussed concerning the volatility of species produced by vitrification during weekly tests implementing either the conventional melting pot or the cold crucible melter. The distribution of volatile species in the off-gas treatment devices is discussed. The paper concludes with a discussion of how using the CCIM vitrification process on one of the La Hague vitrification units can achieve an increased vitrification throughput at a higher temperature without any impact on the resulting waste release

    Nonlinear Characterization of Waveguide Index Profile: Application to Soft-Proton-Exchange in LiNbO3

    Full text link
    In integrated photonics, the precise knowledge of the waveguides refractive index profile is mandatory for the modeling of photonic chips and therefore implementing innovative circuits. Usual index profile determination relies on effective index measurement of propagating modes in planar waveguides coupled with numerical fitting tools. In this paper we propose an alternative technique based on the characterization of the second harmonic generation signature of a nonlinear waveguide. We include the characterization of high-order spatial modes showing their relevance to probe both vertical and lateral distributions. We finally provide an explicit profile ready-to-use for modeling soft-proton exchanged waveguides in lithium niobate and we test its prediction capability. © 1983-2012 IEEE.The work of e-beam writing of periodic domains on soft proton exchanged waveguides was supported by the Russian Science Foundation under Grant 19-72-00091, and performed by D.S. Chezganov, E.A. Pashnina and E.O Vlasov in Ural Federal University

    Constitutive Notch2 signaling in neural stem cells promotes tumorigenic features and astroglial lineage entry

    Get PDF
    Recent studies identified a highly tumorigenic subpopulation of glioma stem cells (GSCs) within malignant gliomas. GSCs are proposed to originate from transformed neural stem cells (NSCs). Several pathways active in NSCs, including the Notch pathway, were shown to promote proliferation and tumorigenesis in GSCs. Notch2 is highly expressed in glioblastoma multiforme (GBM), a highly malignant astrocytoma. It is therefore conceivable that increased Notch2 signaling in NSCs contributes to the formation of GBM. Here, we demonstrate that mice constitutively expressing the activated intracellular domain of Notch2 in NSCs display a hyperplasia of the neurogenic niche and reduced neuronal lineage entry. Neurospheres derived from these mice show increased proliferation, survival and resistance to apoptosis. Moreover, they preferentially differentiate into astrocytes, which are the characteristic cellular population of astrocytoma. Likewise, we show that Notch2 signaling increases proliferation and resistance to apoptosis in human GBM cell lines. Gene expression profiling of GBM patient tumor samples reveals a positive correlation of Notch2 transcripts with gene transcripts controlling anti-apoptotic processes, stemness and astrocyte fate, and a negative correlation with gene transcripts controlling proapoptotic processes and oligodendrocyte fate. Our data show that Notch2 signaling in NSCs produces features of GSCs and induces astrocytic lineage entry, consistent with a possible role in astrocytoma formation

    The enhancement of stress-related memory by glucocorticoids depends on synapsin-Ia/Ib

    Get PDF
    The activation of glucocorticoid receptors (GR) by glucocorticoids increases stress-related memory through the activation of the MAPK signaling pathway and the downstream transcription factor Egr-1. Here, using converging in vitro and in vivo approaches, respectively, GR-expressing cell lines, culture of hippocampal neurons, and GR genetically modified mice (GRNesCre), we identified synapsin-Ia/Ib as one of the effectors of the glucocorticoid signaling cascade. Stress and glucocorticoid-induced activation of the GR modulate synapsin-Ia/Ib through two complementary mechanisms. First, glucocorticoids driving Egr-1 expression increase the expression of synapsin-Ia/Ib, and second, glucocorticoids driving MAPK activation increase its phosphorylation. Finally, we showed that blocking fucosylation of synapsin-Ia/Ib in the hippocampus inhibits its expression and prevents the glucocorticoid-mediated increase in stress-related memory. In conclusion, our data provide a complete molecular pathway (GR/Egr-1/MAPK/Syn-Ia/Ib) through which stress and glucocorticoids enhance the memory of stress-related events and highlight the function of synapsin-Ia/Ib as molecular effector of the behavioral effects of stress

    Periodic domain patterning by electron beam of proton exchanged waveguides in lithium niobate

    Get PDF
    Formation of domain structure by electron beam irradiation in congruent lithium niobate covered by surface dielectric layer with planar and channel waveguides produced by Soft Proton Exchange (SPE) process has been studied. Formation of domains with arbitrary shapes as a result of discrete switching has been revealed. The fact was attributed to ineffective screening of depolarization field in the crystals with a surface layer modified by SPE process. The dependences of the domain sizes on the dose and the distance between irradiated areas have been revealed. Finally, we have demonstrated that electron beam irradiation of lithium niobate crystals with surface resist layer can produce high quality periodical domain patterns after channel waveguide fabrication. Second harmonic generation with normalized nonlinear conversion efficiency up to 48%/(W cm2) has been achieved in such waveguides. © 2016 Author(s)
    corecore