59 research outputs found

    Assessing climate change impacts on crops by adopting a set of crop performance indicators

    Get PDF
    AbstractThe impact of climate change on the agricultural systems of three major islands in the Mediterranean basin, namely Sicily, Crete and Cyprus, was evaluated using a suite of specifically calibrated crop models and the outputs of a regional circulation model for Representative Concentration Pathway (RCP) 4.5 and 8.5 downscaled to 12 km of resolution and tested for its effectiveness in reproducing the local meteorological data. The most important annual (wheat, barley, tomato and potato) and perennial (grapevine and olive tree) crops were selected to represent the agricultural systems of the islands. The same modelling framework was used to test the effectiveness of autonomous adaptation options, such as shifting sowing date and the use of varieties with different growing season length. The results highlighted that, on average, warmer temperatures advanced both anthesis and maturity of the selected crops, but at different magnitudes depending on the crop and the island. Winter crops (barley, wheat and potato) experienced the lowest impact in terms of yield loss with respect to the baseline, with even some positive effects, especially in Sicily where both wheat and barley showed a general increase of 9% as compared to the baseline, while potato increased up to + 17%. Amongst perennial crops, olive tree showed low variation under RCP 4.5, but on average increased by 7% under RCP 8.5 on the three islands. Climate change had a detrimental effect specifically on tomato (− 2% on average in RCP 8.5 and 4.5 on the three islands) and grapevine (− 7%). The use of different sowing dates, or different varieties, revealed that for winter crops early autumn sowing is still the best option for producing wheat and barley in future periods on the three islands under both future scenarios. For tomato and potato, advancing sowing date to early winter is a winning strategy that may even increase final yield (+ 9% for tomato and + 17% for potato, on average). For grapevine, the use of late varieties, while suffering the most from increasing temperatures and reduced rainfall (− 15%, on average), is still a valuable option to keep high yield levels with respect to earlier varieties, which even if showing some increases with respect to the baseline have a generally much lower production level. The same may be applied to olive tree although the production differences between late and early varieties are less evident and climate change exerts a favourable influence (+ 4 and + 3% for early and late varieties, respectively)

    Effects of input data aggregation on simulated crop yields in temperate and Mediterranean climates

    Get PDF
    The modelling exercise for this study was highly supported by partner universities and research institutes in the framework of the MACSUR project and financially supported by the German Federal Ministry of Education and Research BMBF (FKZ 2815ERA01J) in the framework of the funding measure “Soil as a Sustainable Resource for the Bioeconomy – BonaRes”, project “BonaRes (Module B): BonaRes Centre for Soil Research (FKZ BOMA03037514, 031B0026A and 031A608A) and by the Ministry of Agriculture and Food (BMEL) in the framework of the MACSUR project (FKZ 2815ERA01J). In addition, the relevant co-authors from the partner institutes are separately financed by their respective projects. AV, EC, and EL were supported by The Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (220-2007-1218) and by the strategic funding ‘Soil-Water-Landscape’ from the faculty of Natural Resources and Agricultural Sciences (Swedish University of Agricultural Sciences). JC thank the INRA ACCAF metaprogramm for funding. KCK, CN, XS and TS were supported by MACSUR2 (FKZ 031B0039C). MK thanks for the funding by the UK BBSRC (BB/N004922/1) and the MAXWELL HPC team of the University of Aberdeen for providing equipment and support for the DailyDayCent simulations. FE acknowledges support by the German Science Foundation (project EW 119/5-1). GRM, TG, and FE thank Andreas Enders and Gunther Krauss (INRES, University of Bonn) for support. The authors also would like to acknowledge the support provided by the BMBF and the valuable comments of the scientists of the Institut fĂŒr Nutzpflanzenwissenschaften und Ressourcenschutz (INRES), University of Bonn, Germany.Peer reviewedPostprin

    Impact of Spatial Soil and Climate Input Data Aggregation on Regional Yield Simulations

    Get PDF
    This work was financially supported by the German Federal Ministry of Food and Agriculture (BMEL) through the Federal Office for Agriculture and Food (BLE), (2851ERA01J). FT and RPR were supported by FACCE MACSUR (3200009600) through the Finnish Ministry of Agriculture and Forestry (MMM). EC, HE and EL were supported by The Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (220-2007-1218) and by the strategic funding ‘Soil-Water-Landscape’ from the faculty of Natural Resources and Agricultural Sciences (Swedish University of Agricultural Sciences) and thank professor P-E Jansson (Royal Institute of Technology, Stockholm) for support. JC, HR and DW thank the INRA ACCAF metaprogramm for funding and Eric Casellas from UR MIAT INRA for support. CB was funded by the Helmholtz project “REKLIM—Regional Climate Change”. CK was funded by the HGF Alliance “Remote Sensing and Earth System Dynamics” (EDA). FH was funded by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) under the Grant FOR1695. FE and SS acknowledge support by the German Science Foundation (project EW 119/5-1). HH, GZ, SS, TG and FE thank Andreas Enders and Gunther Krauss (INRES, University of Bonn) for support. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Comparison of site sensitivity of crop models using spatially variable field data from Precision Agriculture

    Get PDF
    Site conditions and soil properties have a strong influence on impacts of climate change on crop production. Vulnerability of crop production to changing climate conditions is highly determined by the ability of the site to buffer periods of adverse climatic situations like water scarcity or excessive rainfall.  Therefore, the capability of models to reflect crop responses and water and nutrient dynamics under different site conditions is essential to assess climate impact even on a regional scale. To test and improve sensitivity of models to various site properties such as soil variability and hydrological boundary conditions, spatial variable data sets from precision farming of two fields in Germany and Italy were provided to modellers. For the German 20 ha field soil and management data for 60 grid points for 3 years (2 years wheat, 1 year triticale) were provided. For the Italian field (12 ha) information for 100 grid points were available for three growing seasons of durum wheat. Modellers were asked to run their models using a) the model specific procedure to estimate soil hydraulic properties from texture using their standard procedure and use in step b) fixed values for field capacity and wilting point derived from soil taxonomy. Only the phenology and crop yield of one grid point provided for a basic calibration. In step c) information for all grid points of the first year (yield, soil water and mineral N content for Germany, yield, biomass and LAI for Italy) were provided. First results of five out of twelve participating models are compared against measured state variables analysing their site specific response and consistency across crop and soil variables.(Main text to be published in a peer-reviewed journal

    Comparison of site sensitivity of crop models using spatially variable field data from Precision Agriculture

    Get PDF
    Site conditions and soil properties have a strong influence on impacts of climate change on crop production. Vulnerability of crop production to changing climate conditions is highly determined by the ability of the site to buffer periods of adverse climatic situations like water scarcity or excessive rainfall.  Therefore, the capability of models to reflect crop responses and water and nutrient dynamics under different site conditions is essential to assess climate impact even on a regional scale. To test and improve sensitivity of models to various site properties such as soil variability and hydrological boundary conditions, spatial variable data sets from precision farming of two fields in Germany and Italy were provided to modellers. For the German 20 ha field soil and management data for 60 grid points for 3 years (2 years wheat, 1 year triticale) were provided. For the Italian field (12 ha) information for 100 grid points were available for three growing seasons of durum wheat. Modellers were asked to run their models using a) the model specific procedure to estimate soil hydraulic properties from texture using their standard procedure and use in step b) fixed values for field capacity and wilting point derived from soil taxonomy. Only the phenology and crop yield of one grid point provided for a basic calibration. In step c) information for all grid points of the first year (yield, soil water and mineral N content for Germany, yield, biomass and LAI for Italy) were provided. First results of five out of twelve participating models are compared against measured state variables analysing their site specific response and consistency across crop and soil variables.(Main text to be published in a peer-reviewed journal

    Effects of climate input data aggregation on modelling regional crop yields

    Get PDF
    Crop models can be sensitive to climate input data aggregation and this response may differ among models. This should be considered when applying field-scale models for assessment of climate change impacts on larger spatial scales or when coupling models across scales. In order to evaluate these effects systematically, an ensemble of ten crop models was run with climate input data on different spatial aggregations ranging from 1, 10, 25, 50 and 100 km horizontal resolution for the state of North Rhine-Westphalia, Germany. Models were minimally calibrated to typical sowing and harvest dates, and crop yields observed in the region, subsequently simulating potential, water-limited and nitrogen-limited production of winter wheat and silage maize for 1982-2011. Outputs were analysed for 19 variables (yield, evapotranspiration, soil organic carbon, etc.). In this study the sensitivity of the individual models and the model ensemble in response to input data aggregation is assessed for crop yield. Results show that the mean yield of the region calculated from climate time series of 1 km horizontal resolution changes only little when using climate input data of higher aggregation levels for most models. However, yield frequency distributions change with aggregation, resembling observed data better with increasing resolution. With few exceptions, these results apply to the two crops and three production situations (potential, water-, nitrogen-limited) and across models including the model ensemble, regardless of differences among models in simulated yield levels and spatial yield patterns. Results of this study improve the confidence of using crop models at varying scales

    The chaos in calibrating crop models

    Full text link
    Calibration, the estimation of model parameters based on fitting the model to experimental data, is among the first steps in many applications of system models and has an important impact on simulated values. Here we propose and illustrate a novel method of developing guidelines for calibration of system models. Our example is calibration of the phenology component of crop models. The approach is based on a multi-model study, where all teams are provided with the same data and asked to return simulations for the same conditions. All teams are asked to document in detail their calibration approach, including choices with respect to criteria for best parameters, choice of parameters to estimate and software. Based on an analysis of the advantages and disadvantages of the various choices, we propose calibration recommendations that cover a comprehensive list of decisions and that are based on actual practices.HighlightsWe propose a new approach to deriving calibration recommendations for system modelsApproach is based on analyzing calibration in multi-model simulation exercisesResulting recommendations are holistic and anchored in actual practiceWe apply the approach to calibration of crop models used to simulate phenologyRecommendations concern: objective function, parameters to estimate, software usedCompeting Interest StatementThe authors have declared no competing interest
    • 

    corecore