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Abstract 25 

Soil-crop models are used to simulate ecological processes of the soil-plant-atmosphere 26 

system from the field to the regional scale. Main inputs are soil and climate data in order to 27 

simulate model response variables such as crop yield. The objective of this paper is to 28 

investigate the effect of changing the resolution of input data on simulated crop yields at a 29 

regional scale using up to ten dynamic crop models simulating two crops. We compared the 30 

effects of spatial input data aggregation on simulating crop yields of wheat and maize crops 31 

for two regions with contrasting climate conditions (1) Tuscany (Italy, Mediterranean climate) 32 

and (2) North Rhine Westphalia (NRW, Germany, temperate climate). Soil and climate data 33 

of 1 km resolution were aggregated to resolutions of 10, 25, 50 and 100 km (grid side length) 34 

by selecting the dominant soil class and corresponding soil properties and by arithmetic 35 

averaging, respectively. Differences in yield simulated at coarser resolutions from the yields 36 

simulated at 1 km resolution were calculated to quantify the effect of the aggregation of the 37 

input data (soil and climate data) on simulation results. 38 

The mean yield difference (bias) at regional level was positive due to productive dominant 39 

soil at coarser resolution which could potentially be negative bias that would have been non-40 

productive soil aggregated in respective region.  In both regions, aggregation effects i.e. errors 41 

in simulation of  crop yields at coarser spatial resolution due to the combined aggregation of 42 

soil and climate input data increased with decreasing resolution for both crops but the 43 

aggregation error in Tuscany was larger than in North Rhine Westphalia (NRW). Over 44 

Tuscany, the average percentage absolute differences between grid cell yields at the coarsest 45 

resolution (100 km) compared to the finest resolution (1 km) were up to 20 % and 30 % for 46 

winter wheat and silage maize, respectively. In contrast, in NRW, the average percentage 47 

absolute yield differences  in the coarsest grid cells were <15 for wheat and <20 % for maize. 48 

This implies that for regional yield simulations in temperate humid regions of central Europe 49 



coarser resolutions may be sufficient to achieve reliable yield estimations , whereas, in 50 

Mediterranean areas higher spatial resolutions are required avoiding prediction errors of the 51 

spatially averaged yield of up to 60 % as observed for individual crop models. For 52 

generalization of these outcomes, further investigations in other sub-humid or semi-arid 53 

regions will be necessary.Additionally, aggregating soil data caused larger aggregation errors 54 

in both regions than aggregating climate data. 55 

Keywords: Data resolution, Temperate, Mediterranean, Crop yield, Crop modelling 56 

1 Introduction 57 

The agro climatic condition and associated field processes (soil water movement, nutrient 58 

cycle and nutrient uptake) are incorporated in crop models.  The crop models are applied to 59 

simulate crop yield under different agro-climatic and management conditions and to assess 60 

climate change impacts on crop yield among other agroecosystems. The agro-climatic 61 

conditions in the field along with crop-management practices are represented by measured 62 

soil and climate data. . In general, crop models are  based on  different mathematical 63 

algorithms which describe various agro-ecological processes of the soil-plant–atmosphere 64 

system that e.g. control water flows, nutrient turnover, root water and nutrient uptake and that 65 

support crop growth and development. Soil and climate data are the main input data for crop 66 

models that drive the processes implemented in the model. Most crop growth models were 67 

developed at the plot or field scale (F. Ewert et al., 2015), where the input data can be 68 

measured to initialize and drive the models.  69 

In general, field scale crop models have been validated and applied for multiple locations. The 70 

field based crop models are applied for multiple grid cells at different resolution to cover 71 

entire area of interest. The spatial distinction among the applied grid cells are characterized by 72 

data variability of agro-climatic (such as soil and climate) condition of the studied area.  73 

Therefore, these models are also run beyond the scale of development to predict yields at 74 



regional to global scale, whereby spatially aggregated input data are  used (Rosenzweig et al., 75 

2014; Rosenzweig and Iglesias, 1998; Rosenzweig and Parry, 1994). In climate change 76 

studies crop models are applied using climate change data produced by  global circulation 77 

models (GCMs) at larger scale to assess climate change impacts on crops and environment 78 

(Donatelli et al., 2015) and to design comprehensive adaptation strategies such as 79 

optimization of sowing date from regional to global level. 80 

Classically, at the larger scale input data such as soil or climate data are interfered from 81 

smaller scale measurements and aggregated to the resolution of the simulation, whereby the 82 

aggregation of input data from finer resolution to coarser resolution will lead to losses spatial 83 

variability which depends largely on the aggregation methods (Ewert et al., 2011).  84 

Climate input data from two relatively small regions in Northern and Central Europe 85 

aggregated to different resolutions was used in a range of crop models in Angulo et al., 2013 86 

to study the characteristics of the response variable (i.e. crop yield distribution) as a result of 87 

the input data aggregation (climate data). Further, soil data at different resolutions were used 88 

to simulate crop yield and analyze yield distribution from two  contrasting sites in Angulo et 89 

al. (2014). In these two studies (Angulo et al., 2014, 2013), the impact of input data (soil and 90 

climate respectively) aggregation on simulated yield distribution were not different within 91 

each  model. While, simulated yield distributions (‘figureprint’)  were different for various 92 

models. Thus, the authors insist to use a multi-model ensemble (average of all model output) 93 

approach to analyze input data aggregation impact on regional  crop yield simulation. A 94 

multi-model ensemble approach was also used by Zhao et al, (2015a) who quantified the 95 

climate data aggregation error for regional simulations of several model output variables such 96 

as yield, evapotranspiration, and water use efficiency in North Rhine-Westphalia (NRW) in 97 

Central Europe. The authors used aggregated climatic data at different resolutions (10, 25, 50, 98 

and 100 km). They concluded that weather data aggregation error was highest for simulated 99 



crop yield compared to crop evapotranspiration or water use efficiency, but was below 10% in 100 

all cases.  In the same region, the characteristics (variability and spatial variance) of climatic 101 

data aggregated to coarser resolution was compared to simulated crop yield (winter wheat and 102 

silage maize) from an ensemble mean calculated at different aggregation levels in Hoffmann 103 

et al, (2015). The aggregation error for simulated crop yield was significantly increasing for 104 

decreasing resolution of  the climate data The application of simultaneous aggregation of soil 105 

and climate data to simulate regional crop yield by different crop models were further 106 

investigated by Hoffmann et al, ( 2016). The results showed, that the aggregation errors were 107 

amplified with decreasing resolution of soil and climate data input compared to the 108 

aggregation error made by aggregating only one input variable. 109 

 Nevertheless, the aggregation effects of soil and climate data on regional crop yield 110 

simulations were focused only on temperate, humid region, namely North-Rhine Westphalia 111 

(NRW) in Germany (Hoffmann et al., 2017, 2016; Zhao et al., 2015a) or a boreal one (Angulo 112 

et al., 2014, 2013) and no such study has been performed in a Mediterranean region. 113 

Additionally, no study has been reported so far to compare the aggregation effect between 114 

regions with different soil and climatic conditions.  In general, the climate in the 115 

Mediterranean region is characterized by higher average air temperature during the crop 116 

growing season compared to temperate regions and less precipitation either at the end of the 117 

growing season in the case of winter crops or during the growing season in the case of spring 118 

crops. In addition, the soils in the Mediterranean region show higher spatial variability with 119 

more soils having lower available water capacity due to either finer soil texture or lower soil 120 

depth with higher gravel or stone content. Therefore, periods of water shortage for rainfed 121 

crops are more frequent. Under water-limited production conditions, the spatial aggregation 122 

of soil type in combination with aggregation of climate variables, is expected to have a 123 

stronger impact on simulated crop yield compared to temperate, humid regions.  124 



Therefore, this study compares aggregation effects of soil and climate data on regional yield 125 

simulation for two contrasting climatic region for water-limited production conditions based 126 

on the hypotheses that (1) input data aggregation affects regional yield simulations more in 127 

Mediterranean than in temperate region and (2) input data aggregation error is higher for 128 

spring crops (silage maize) compared to winter crops (winter wheat). 129 

2 Material and Methods  130 

2.1 Study regions 131 

The aggregation effects of input data (soil and climate) on crop yield simulations were 132 

compared between a region under temperate, humid climate conditions North Rhine 133 

Westphalia (NRW, 51° 46' 4.1'' N and 7° 26' 38.4'' E, Germany) and a region under 134 

Mediterranean climate conditions, Tuscany (TUS, 43° 41' 14.1 '' N and 10° 29' 10.3'' E , 135 

Italy). Figure 1 presents the geographical location of the study regions. A summary of  the 136 

main climatic conditions  for these two study  sites are presented in Table 1.  137 

[Table 1 Here] 138 

The long-term annual means of selected climatic variables were calculated based on the 139 

respective climate data from 1995 to 2011. The annual mean temperature for NRW and TUS 140 

are  9.6 o C and 16.1 o C, respectively. The annual mean precipitation sums are 821 mm y-1  141 

for NRW and 949.4 mm y-1 Tuscany.  142 

[Figure 1 Here] 143 



2.2 Preparation of model input data 144 

2.2.1 Soil data 145 

• NRW 146 

The soil data at 1 km resolution for NRW, Germany was originally already aggregated by 147 

dominant soil type from  approximately 300 m resolution  to grid cells of 1 km resolution 148 

(Hoffmann et al., 2016). The soil data source for NRW and the methods to derive several soil 149 

properties including topsoil organic carbon, soil texture, soil bulk density, and soil albedo are 150 

explained in Hoffmann et al, (2016). In a second step the soil data at 1 km resolution was 151 

aggregated to coarser resolution by dominant soil type from the 1 km resolution to 10, 25, 50, 152 

100 km as well as to a NRW mean (SNRW). The results of the soil data aggregated from 1 km 153 

resolution to 100 km resolution for NRW is shown in Fig. 2. The dominant soil type for NRW 154 

(SNRW) was  a Cambisol.  155 

[Figure 2 Here] 156 

• Tuscany  157 

The soil distribution including soil physical and chemical properties were obtained from the 158 

data base of Gardin and Vinci (2006). The data base contains soil layer-wise information 159 

about soil layer thickness, soil texture, gravel and soil organic carbon content. Additional soil 160 

properties for each layer (such as soil hydraulic properties) required as input to different crop 161 

models were prepared based on soil texture and gravel content information using pedotransfer 162 

functions (PTF) (https://de.mathworks.com/matlabcentral/fileexchange/45468-soil-163 

classification-sand--clay--t-varargin-). In Tuscany, information on soil classification at the 164 

soil order level was not available. Therefore, the dominant soil texture in the topsoil at the 165 

resolution of 1 km was used to aggregate the soil properties to the resolution of coarser grids 166 

https://de.mathworks.com/matlabcentral/fileexchange/45468-soil-classification-sand--clay--t-varargin-
https://de.mathworks.com/matlabcentral/fileexchange/45468-soil-classification-sand--clay--t-varargin-


(10 – 100 km). The soil data at a coarser resolution of 10, 25, 50 and 100 km were prepared 167 

by selecting the dominant soil texture among the 1 km soil grids (Fig. 3). 168 

[Figure 3 Here] 169 

The dominant soil type aggregated at the regional level for Tuscany is loam. The associated 170 

soil properties for dominant soils at the regional level such as soil depth, bulk density, wilting 171 

point and field capacity are presented in the annex table AT1. 172 

The variability of soil properties of top soil layer for NRW and TUS at 1 km resolution is 173 

shown in Table 2 and the properties for other soil layers are presented in the supplementary 174 

material (Table S2). The soil database with similar soil properties among others at the 175 

different level of aggregation were used as soil input data to different models.     176 

The soil depth of the most dominant soil in NRW is about 2.3 (range 0.1 – 2.3 m for soil 177 

various layers in 1 km grid cells) m while for Tuscany it is 1.36 (range in 0.18-1.5 for 178 

different soil layers in 1 km grid cells) m. The field capacity of the first soil layer for the 179 

dominant soils are 0.36 and 0.23 m3 m-3 for NRW and Tuscany, respectively. Other soil 180 

parameters required to simulate the crop yields are provided in Hoffmann et al. (2016) mainly 181 

for NRW region and in the supplementary material (Table S2). 182 

[Table 2 Here] 183 

2.2.2 Climate data 184 

• NRW 185 

The climate data set for NRW at 1 km include daily time series of minimum, mean and 186 

maximum air temperature, precipitation, global radiation, wind speed and relative humidity 187 

for the period 1982 to 2011 and was established by interpolation of measured climate 188 

variables at 280 weather stations provided by the German Meteorological Services (DWD). 189 

All climate variables were aggregated to coarser resolutions from 1 km resolution data by 190 



arithmetic averaging. The climate data source and the aggregation process to coarser 191 

resolution for NRW are explained in detail in Hoffmann et al, (2016). 192 

• Tuscany 193 

The daily meteorological data for Tuscany at 1 km resolution from 1995 to 2013 were 194 

provided by the Lamma Consortium of Tuscany Region (http://www.lamma.rete.toscana.it/) 195 

This dataset includes gridded daily records of minimum, mean and maximum temperature, 196 

precipitation, solar radiation, wind speed and relative humidity (about 22,000 grids cells over 197 

Tuscany region), which were calculated from the local meteorological network. In particular, 198 

daily maximum and minimum temperatures and total daily-cumulated precipitation, collected 199 

from 94 and 159 stations, were interpolated according to the DAYMET procedure (Thornton 200 

et al., 1997) to produce the relevant daily digital maps as described in Chiesi et al. (2007). 201 

These maps were in turn used as input of the MT-CLIM procedure to produce additional daily 202 

maps of solar radiation based on algorithm presented in Thornton et al., 2000 was specifically 203 

calibrated for Tuscany region (not published). Relative humidity was calculated by using 204 

daily minimum temperature and mean temperature as explain in Allen et al. 1998.. Daily data 205 

of wind speed at a height of 2 meters were obtained by interpolating the data from 45 weather 206 

stations using a nearest neighbour approach. 207 

The meteorological data at 1 km resolution were aggregated similar to the approach applied 208 

on NRW to coarser resolution of 10 , 25 , 50  and 100 km by averaging all grid cells at 1 km 209 

included within the respective coarser resolution. The spatial variability of average minimum, 210 

mean and maximum temperature for the period from 1995 to 2013 aggregated across 211 

resolutions is shown in Fig 4.  212 

The daily climate variables for each year during the growing period of the respective crop 213 

where averaged from 1995 to 2011 (Table 6). The mean temperature during the growing 214 

season for silage maize in NRW and Tuscany are respectively 16 and 22 oC while, the 215 



average of mean temperature during the growing period of wheat are 8 oC for NRW and 12 oC 216 

for Tuscany. The sum of precipitation during growing season of maize in NRW and Tuscany 217 

are similar with the approximate value of 350 mm, while, the precipitation sum during 218 

growing season of winter wheat in NRW is about 632 and 591 mm for Tuscany Italy. The 219 

climate water balance (cwb: ET0−Precipitation, mm) for respective crop growing season and 220 

regions is  higher for Tuscany than for NRW. The summary statistic of the climatic variables 221 

for each region for the respective crop during growing period is presented in Table 3 and the 222 

soil properties of the dominant soil type in each region is presented in Table S2. 223 

[Figure 4 Here] 224 

[Table 3 Here] 225 

2.3 Model setup 226 

The model ensemble consisted of a total of nine field scale crop models (AgroC, Century, 227 

CoupModel, DailyDayCent, EPIC, HERMES, MONICA, SIMPLACE<LINTUL5;SLIM>, 228 

STICS) which have been frequently used in climate change impact studies at field to regional 229 

scale (Table 4) and the respective abbreviations of the models in figures where it stated are in 230 

AGRC, CENT, COUP, DayC, EPIC, HERM, MONI, LINT and STIC. All models were run 231 

for both crops (wheat and maize) except the CoupModel model, which was only run for 232 

wheat. The model runs were constrained by the climate and soil properties as explained in 2.1 233 

and 2.2 and management rules (see below). In NRW all models were run constraining the 234 

maximum root depth to the maximum soil depth (unrestricted root growth).  235 

[Table 4 Here] 236 

Aggregated soil and climate as well as crop management data were used for the crop model 237 

ensemble to simulate the yield of silage maize and winter wheat. The crop management data 238 

with respect to tillage, sowing, and fertilizer application (timing and amount) were fixed for 239 



both regions while the date of harvest for each crop was either simulated or observed harvest 240 

dates were used depending on the requirements of individual models. The detailed crop 241 

management data for winter wheat and silage maize in the two regions are shown in Table 5 242 

and 6. 243 

[Table 5 Here] 244 

[Table 6 Here] 245 

Initially the crop models were calibrated at 1 km resolution for crop phenological stages by 246 

minimizing the root mean square error (RMSE) between observed and simulated harvest date 247 

in order to match the area weighted average of observed yield for NRW  and Tuscany. The 248 

calibration procedure for NRW is further explained in Hoffmann et al., 2016.  The yield for 249 

winter wheat refers to grain yield while for the silage maize it refers to the aboveground 250 

biomass. Finally, all crop models were run for respective crops and different combinations of 251 

soil and climate data resolutions as listed in Table 7. 252 

[Table 7 Here] 253 

The combination of input data at different aggregation levels is abbreviated as SyxCz (where 254 

Sy is the soil data at resolution y and Cz is the climate data at resolution z). Altogether, 15 255 

combinations of spatial resolutions of soil and climate input data were used to simulate silage 256 

maize and winter wheat for the each region. The modelled output i.e. yield from each 257 

individual crop model was  summarized for each soil and climate combination to calculate the 258 

model ensemble mean  and the impacts of soil and climate data aggregation were further 259 

analyzed for the simulation results based on this model ensemble mean. The general 260 

modelling framework used in this study is presented in Fig. 5. 261 

[Figure 5 Here] 262 



2.4 Calculation of the aggregation errors 263 

In general, the aggregation errors were calculated as the differences in model output at a given 264 

resolution (e.g., 10, 25, 50, 100, Tus or NRW) with respect to the model outputs generated at 265 

the highest resolution at 1 km. The error indicators were calculated from the following 266 

equations. The effects of aggregation of soil and climate input data on the yield simulations of 267 

the model ensemble mean are quantified for each spatial resolution. Equation 1, quantifies the 268 

aggregation error relative to the pixel level of the finest 1 km resolution, while the other 269 

equations  quantify the aggregation error at the regional level (average of all pixels at 1 km 270 

resolution).   271 

𝐴𝑏𝑠𝑃𝐷𝑗 =  (
|𝑌𝐶𝑗 − 𝑌𝐹𝑗|

𝑌𝐹𝑗
) ∗ 100       (1) 272 

where, AbsPDj is the absolute percentage difference with YCj as the yield simulated at coarser 273 

resolution that is disaggregated to 1 km resoluton of jth pixel, and YFj is the simulated yield of 274 

respective grid cell at 1 km resolution included by coarser resolution. The mean difference 275 

(MD) is calculated as the average difference between the yield YCi simulated at coarser 276 

resolution disaggregated to 1 km resolution ofjth pixel and the yield YFj simulated at finar  of 277 

1 km resolution (pixel j)𝑀𝐷 = 𝑁−1 ∗ (∑ 𝑌𝐶𝑗 − 𝑌𝐹𝑗
𝑁
𝑗=1 )            (2)The mean absolute 278 

difference (AMD) is the equivalent to the mean difference (MD) except that the absolute 279 

value of the differences between coarser resolution pixel and the 1 km pixel is used: 280 

 281 

𝐴𝑀𝐷 = 𝑁−1 ∗ (∑|𝑌𝐶𝑗 − 𝑌𝐹𝑗|

𝑁

𝑗=1

)            (3) 282 

 283 



𝐴𝑣𝑔𝑌𝐹 is the average yield at 1 km resolution, where N is the number of pixels at 1 km 284 

resolution, and rAAD is the average absolute yield deviation normalized to the average yield 285 

at 1 km resolution. 286 

 287 

𝐴𝑣𝑔𝑌𝐹 = 𝑁−1 ∗ (∑ 𝑌𝐹𝑗

𝑁

𝑗=1

)            (4) 288 

𝑟𝐴𝐴𝐷 =
𝑁−1 ∗ (∑ |𝑌𝐶𝑖 − 𝑌𝐹𝑗|𝑁

𝑖=1 ) ∗ 100

𝐴𝑣𝑔𝑌𝐹
     (5) 289 

 290 

3 Results 291 

3.1 Spatial pattern of crop yield simulations in NRW and Tuscany  292 

3.1.1 Silage maize yield simulation in NRW and Tuscany 293 

The ensemble mean for silage maize across all crop models simulated for different 294 

combinations of aggregated soil and climate data under water limited conditions shows a 295 

relatively higher  silage maize yield simulated for NRW (Fig. 6A) as compared to Tuscany 296 

(Fig. 6B). Additionally, spatial variability of silage maize yields are highest when both soil 297 

and climate input data at the finest resolution (1 km) were used (S1xC1 in NRW and Tuscany). 298 

For both regions, only small changes in the spatial yield patterns are detectable, when the 299 

finest soil input data resolution (S1 = soil at 1 km) is combined with average climate input 300 

data over the entire region (CNRW  or CTus) (Fig. 6, 1stcolumn for each panel i.e. S1xCNRW and 301 

S1xCTUS). On the other hand, combining dominant soil conditions (SNRW or STUS) with high 302 

resolution climate data (C1 = climate at 1 km) leads to pronounced differences in the predicted 303 



silage maize yield compared to the finest resolution S1xC1. The overall range of silage maize 304 

yield for NRW is from 10 to 18 t ha-1 while for Tuscany it is from 5 to 18 t ha-1. 305 

[Figure 6 Here] 306 

3.1.2 Winter wheat simulation in NRW and Tuscany 307 

The average crop yields for winter wheat in NRW are much higher than in Tuscany regardless 308 

of the soil-climate input data combination (Fig. 7). Yield for winter wheat in NRW ranges 309 

from 4 to 10 t ha-1 while for Tuscany it is between 0 and 6 t ha-1. The spatial variability of the 310 

ensemble mean yield for (winter) wheat across all models is similar to the variability of the 311 

ensemble mean of silage maize yield. In both NRW and Tuscany, the spatial variability of the 312 

winter wheat yield is highest when the finest resolution of climate and soil input (S1xC1) is 313 

used. In Tuscany, the spatial variability of simulated winter wheat yields using the finest 314 

resolution of soil and climate input data (S1xC1) is comparable to the spatial variability of 315 

yields simulated with the combination of finest soil resolution and average regional climate 316 

(S1xCTUS) that exhibit slightly higher values in the northern  part of the region. The yield 317 

pattern in which the finest resolutions of soil and climate input is used (S1xC1 i.e, Fig. 7 1st 318 

column of panel B) is comparable with yields produced with the finest climate resolution and 319 

the dominant soil type (STUSxC1 i.e, Fig. 7, 1st column of Panel B). This is contrast to the 320 

spatial variability of winter wheat yields in NRW, where the simulated yields based on the 321 

combination of finest climate input resolution with the dominant soil type exhibited a much 322 

lower spatial variability as compared to the yield simulated with the highest resolution of both 323 

soil and climate input (S1xC1 i.e,Fig. 7, 1st column in panel A). 324 

[Figure 7 Here] 325 

Thus, yield simulations for silage maize and winter wheat at finest resolution of soil and 326 

climate input (1 km resolution (S1xC1) (Fig. 6 and 7) have the highest spatial variability 327 

compared to all other soil and climate input data combinations. With aggregation of soil and 328 



climate input data the spatial variability of simulated crop yields decreases (Fig. 6 and 7). 329 

However, in the case of winter wheat, when only climate input data is aggregated and 330 

combined with the dominant soil type  (3rd row,  7) the  spatial variability of simulated yields 331 

is much lower in all resolutions. Thus, the aggregation of climate input data has less impact 332 

on the spatial variability of simulated wheat yields under water limited conditions than the 333 

simultaneous aggregation of soil and climate for both regions. 334 

3.2 Aggregation effects on simulated crop yields 335 

3.2.1 Aggregation effect on silage maize yield simulations in NRW and Tuscany 336 

In a next step, the aggregation errors were calculated based on Eq. 1-5 for the different 337 

regions and combinations of aggregation. Hereby, the finest resolution (S1xC1) was always 338 

chosen as the reference simulation in each region. The difference of crop yields when 339 

simulated at a coarser resolution of soil and climate input compared to the finest resolution at 340 

1 km (S1xC1) is considered as the effect of input data aggregation on yield simulations. The 341 

magnitude of yield differences for silage maize ranged from -6 to 6 t ha-1 (Fig. 8) for both 342 

regions. In general, the average bias in silage maize yield (MD) due to input data aggregation 343 

was always positive, except for the combined aggregation of soil and climate variables in 344 

Tuscany. For silage maize simultaneous aggregation of soil and climate to coarser resolution 345 

of 50 and 100 km caused lower simulated yield in the North-East of NRW compared to the 346 

reference resolution (1 km) as indicated by negative yield differences, while higher yields 347 

with positive yield difference are observed towards the southern part (Fig. 8, panel A: S50xC50 348 

and S100xC100). A similar pattern can be distinguished when aggregating soil input data to 50 349 

and 100 km combined with an average regional climate (Fig. 8, panel A: S50xCNRW and 350 

S100xCNRW). The combination of an average regional climate for NRW with the soil input data 351 

at 1 km resolution has almost no yield difference with respect to the simulated maize yields of 352 

the reference resolution (Fig. 8, panel A: S1xCNRW).The spatial patterns of yield differences 353 



for other combinations (Fig. 8, panel A: from S10xCNRW to S100xCNRW, 2nd row) are similar to 354 

the pattern of yield differences that are observed with the simultaneous aggregation of soil 355 

and climate data (Fig. 8, panel A: from S10xC10 to S100xC100).  356 

A similar observation can be made for the spatial patterns of yield differences in Tuscany for 357 

maize under water-limited conditions (Fig. 8, panel B). With decreasing resolution of soil and 358 

climate input data, the yield differences are positive towards the northern part and negative 359 

towards the southern part of Tuscany (Fig. 8, panel B: S50xC50 and S100xC100). The yield 360 

difference for silage maize due to the combination of the average regional climate (CTUS) with 361 

soil input at 1 km resolution is zero towards the northern part, while it is positive from the 362 

central to the southern part of Tuscany (Fig. 8, panel B: S1xCTus). The pattern of yield 363 

differences for silage maize in Tuscany based on simultaneous aggregation of soil and climate 364 

input data is similar (Fig. 8, panel B: from S10xC10 to S100xC100, 1st row) to the pattern 365 

observed when only soil is aggregated and combined with the average regional climate (Fig. 366 

8, panel B: from S10xCTus to S100xCTus, 2
nd row). The yield differences are either positive or 367 

zero for Tuscany when aggregation of climate input is combined with the dominant soil 368 

(STUS) (Fig. 8, panel B, 3rd row). 369 

[Figure 8 Here] 370 

The aggregation effects on simulated silage maize yields are further analyzed as absolute 371 

percentage yield difference (Eq. 1) from the yields simulated on the reference 1 km 372 

resolution. The variability of absolute percentage difference for silage maize is presented as 373 

box plots and its frequency distribution as violin plot for different aggregation levels for 374 

NRW (Fig. 9A) and Tuscany (Fig. 9B). The percentage absolute yield differences (%) for 375 

silage maize yield for the ensemble mean for combined soil and climate data aggregation are 376 

in general higher for Tuscany than for NRW (Fig. 9). The mean percentage absolute 377 

differences are ranging from 5 to 12 % in NRW and from 15 to 35 % in Tuscany. Looking at 378 



the histograms it becomes also clear, that the variability of the percentage absolute yield 379 

differences in NRW can reach up to 40 % in some grid cells, and that it can be even larger in 380 

Tuscany (>40%). On the other hand, lowest values of the percentage absolute difference are 381 

between 0 to 5 % in NRW and 0 to 15 % in Tuscany.  382 

[Figure 9 Here] 383 

The aggregation effect at the regional scale quantified as the normalized or relative average 384 

absolute yield deviation (rAAD) of silage maize yield in NRW is below 35 % for all crop 385 

models regardless of the aggregation level of soil and climate input (Fig. 10, panel SyxCz) 386 

whereas the rAAD increases with decreasing resolution. The rAAD is highest reaching 30 % 387 

for the EPIC model followed by DayCent when soil and climate input is aggregated to 100 388 

km (S100xC100) and lowest for MONICA, which is always below 10% while the ensemble 389 

mean is about 10%. In contrast, when soil and climate input are aggregated, rAAD for the 390 

maize simulations in Tuscany is much higher and reaches for DailyDayCent values of ~60 %. 391 

Lowest values were found in Tuscany for Century (<16%), indicating that the overall spread 392 

of the model results is much larger compared to NRW. The larger spread but also the higher 393 

values of rAAD for some models in Tuscany is also reflected in the rAAD of the ensemble 394 

mean, which reaches 30% at the lowest input data resolution (S100xC100). However, the effect 395 

of aggregating climate data while keeping the dominant regional soil constant (panels: 396 

SNRWxCz and STUSxCz) shows a completely different picture. In this case, the rAAD seems to 397 

be relatively unaffected by the aggregation of climate inputs, and additionally, the spread 398 

between models is even larger. When aggregating of soil inputs and combining it with the 399 

regional mean climate (SyxCNRW and SyxCTUS), the rAAD shows a similar pattern for 400 

respective crop models as in the simultaneous aggregation of soil and climate inputs. Only 401 

EPIC and CENTURY predicted decreased rAAD when decreasing soil resolution from 25 to 402 

50 km for SyxCTUS in Tuscany.   403 



[Figure 10 Here] 404 

3.2.2 Aggregation effect on winter wheat yield simulation in NRW and Tuscany 405 

As already shown for silage maize in NRW, the simultaneous aggregation of soil and climate 406 

input to coarser resolutions of 50 and 100 km caused lower simulated wheat yields with 407 

respect to the reference resolution (1 km). This is indicated by negative winter wheat yield 408 

differences towards the North-Eastern part of NRW, while higher simulated yields with 409 

positive yield differences are observed toward the South of NRW (Fig. 11, panel A: S50xC50 410 

and S100xC100). A similar pattern is observed when aggregating soil input to 50 and 100 km 411 

and combining it with the mean regional climate (Fig. 11, panel A: S50xCNRW and S100xCNRW). 412 

The aggregation of climate data at different resolutions with the dominant regional soil caused 413 

higher simulated wheat yields than yield simulations for the reference resolution at 1km (Fig. 414 

11, panel A: from SNRWxC1 to SNRWxC100). The mean yield differences for winter wheat in 415 

NRW (Fig. 11, panel A) ranged from 0.01 to 1.0 t ha-1. They increased when climate input 416 

was aggregated from 1 to 100 km resolution and combined with the dominant regional soil 417 

(Fig. 11, panel A: 3rd row). The mean absolute yield differences for winter wheat (AMD i.e. 418 

numbers in each figures) are increasing with decreasing resolution of soil and climate input 419 

data. The highest mean yield difference in NRW of 1 t ha-1 is observed for the combination of 420 

dominant soil and 100 km climate aggregation (SNRWxC100). Again, the overall findings 421 

indicate that the simultaneous aggregation of soil and climate input data has higher impact on 422 

the mean yield difference than the aggregation of only soil or climate (Fig. 11 Panel A 1st 423 

row).  424 

[Figure 11 Here] 425 

For Tuscany, the mean yield differences for wheat were at maximum 2 t ha-1, mainly located 426 

in the northern part, while for other parts of Tuscany slightly negative differences or no 427 

difference occurred (Fig. 11, Panel B). In general, the mean yield difference of simulated 428 



wheat yields for Tuscany increased with the combination of aggregated soil or climate input 429 

to coarser resolutions (from 10 km to 100 km).  430 

In comparison to NRW, the percentage absolute yield differences for winter wheat in Tuscany 431 

has higher values, which range from 10 to 15 % when aggregating soil and climate input 432 

simultaneously to coarser resolutions (Fig. 12). Additionally to the larger mean error, the 433 

spread of the percentage absolute yield differences is also larger for Tuscany compared to 434 

NRW. Aggregating soil input data while keeping the climate input constant over the region 435 

(CNRW or CTUS) indicates also an increasing trend of percentage absolute yield difference for 436 

NRW. For Tuscany the percentage absolute yield differences increased with climate 437 

resolution of 10 and 25 km and slightly decreased for resolutions of 50 and 100 km. Looking 438 

at the histograms it becomes also visible that the aggregation of soil input data combined with 439 

the dominant climate leads to large absolute percentage yield spreads between the grid-cells. 440 

In both regions, the shape of the violin plots are similar, indicating that the lower absolute 441 

percentage yield differences are found in a higher number of pixels while only few pixels 442 

have very high percentage absolute yield differences (Fig. 12). 443 

[Figure 12 Here] 444 

The aggregation error for simulated wheat yields in NRW quantified at regional level as 445 

normalized or relative average absolute yield deviation (rAAD) (Eq. 5) is below 30 % for 446 

most of the crop models, while only two models HERMES and DailyDayCent show rAAD 447 

values higher than 30 %, when climate input is aggregated and combined with the dominant 448 

soil (Fig. 13NRW). For the combined aggregation of soil and climate input data (SyxCz), the 449 

rAAD increases with decreasing resolution in both regions. However, maximum rAAD values 450 

are observed in Tuscany reaching almost 50% with the EPIC model (Fig. 13 TUS). The 451 

rAAD values for winter wheat are, in general, larger in Tuscany for the same aggregation 452 

levels. The spread between the models is also larger in Tuscany compared to NRW, which 453 



had been already observed for maize (Fig. 10). Thus, for simulation of winter wheat under 454 

water limited conditions, the aggregation error at regional level shows an increasing trend 455 

when soil and climate input data are simultaneously aggregated to the coarser resolutions 456 

regardless of the region (Fig. 13: panels SyxCz). The increase of rAAD is less pronounced in 457 

winter wheat simulations, when only climate or soil input is aggregated except for climate 458 

input aggregation combined with the dominant soil in Tuscany (Fig 13 TUS). 459 

[Figure 13 Here] 460 

 461 

 462 

4 Discussion 463 

4.1 Input data aggregation 464 

Crop model simulations depend highly on the availability and reliability of input data for soil 465 

parameter and climate variables. As Ewert et al. (2015, 2011) already stated, the spatial 466 

aggregation of input data from local to regional scale reduces the variability of these data. 467 

Furthermore, the deformation of data for different climatic variables when aggregated from 468 

higher resolution of 1 km to coarser resolution of 10 km, 25 km, 50 km and 100 km is 469 

evaluated in Hoffmann et al. (2017), indicating that the spatial variability of climatic variables 470 

decreases due to data aggregation (1 to 100 km) with similar mean values (Hoffmann et al., 471 

2015). For example, in the mountainous North-Western part of Tuscany, the low values for 472 

daily minimum temperature detectable at 1 km resolution are averaged out at coarser 473 

resolutions of 100 km (Fig. 4). The same applies to the higher temperatures at 1 km resolution 474 

at the southern edge of the region (Fig. 4). This means that the aggregation of data in 475 

heterogeneous areas has stronger impacts on the extreme than on the mean values. The same 476 



feature of a loss of extreme values has been also reported for temporal aggregation of climatic 477 

data by (Weihermuller et al., 2011).  478 

As shown in the results there are common trends in the simulated yields as a function of input 479 

data aggregation in NRW and Tuscany but also differences are detectable between the two 480 

study regions: 481 

1. Combined aggregation of soil and climate will lead to an increase of the error in 482 

simulated yields with decreasing resolution for both winter and spring crop. 483 

2. Aggregation of soil data inputs, while keeping the mean regional climate, shows 484 

comparable effects on the error in simulated yields as a combined aggregation of soil 485 

and climate for both winter and spring crop for both study regions. 486 

3. Aggregation of climate data inputs, while keeping the dominant regional soils, shows 487 

only little effects on the error in simulated yields for both winter and spring crop 488 

(wheat and maize) for both study regions.  489 

4. The Mediterranean region (Tuscany) indicate larger spread between the models and 490 

larger aggregation errors. 491 

Point 1 to 3 has been already reported for NRW by Hoffmann et al. (2017) but due to the 492 

limitation of the study to one region no generalization could be made. By analyzing the 493 

aggregation effect for two contrasting regions (NRW and Tuscany) it becomes more evident, 494 

that soil aggregation has a stronger impact compared to the aggregation of climatic data, for 495 

these areas and environmental conditions simulated. The impact of climatic data aggregation 496 

on simulated crop yield has been studied by Zhao et al. (2015b) who related the spatial 497 

variability of climatic data on high resolution to topographic features (mainly elevation) in the 498 

landscape. Hereby, they found that flat and more homogeneous areas can be aggregated to 499 

coarser resolution without increasing the aggregation error, while more heterogeneous 500 



landscapes react differently with much larger aggregation errors. The aggregation effect of 501 

climate data  for winter wheat for a Scandinavian region in Finland was also evaluated by 502 

Angulo et al, (2013), who stated that simulated yield distributions are similar and independent 503 

of the resolution of the climate input data. As both regions analyzed in our study are rather 504 

heterogeneous in terms of elevation and climate, an effect of the aggregation of climate data 505 

on the simulated yields is expected. 506 

Depending on the extent of heterogeneity in topographic and climatic features, the threshold 507 

of the data resolution needs to minimize the data aggregation effect on model simulation 508 

error. This has been investigated in Zhao et al, (2015b), defining the requirement of data at 509 

high resolution in topographically heterogeneous regions compared to plain areas. For the 510 

aggregation of soils, the soil properties at the field level are aggregated to the regional level. 511 

The aggregation of soil properties from fine to coarser resolution is classically done by 512 

selecting the dominant soil type with a corresponding reference soil profile rather than 513 

averaging soil properties. The reasons not to use spatial averaging is quite obvious, because 514 

averaging e.g. soil texture is associated with considerable problems. For example, a grid cell 515 

containing an entirely  sandy soil for half of its area with the other half a clayey textured soil 516 

throughout the rooting zone would provide a sandy clay on average, which neither adequately 517 

reflects neither the physical properties of sandy soil material  nor those of clayey soilmaterial. 518 

On the other hand, aggregation by dominant soil type will lead to a loss of information in the 519 

simulated outputs because non-dominant but physically very differently behaving soils will 520 

not be taken into account during the model runs (Coucheney et al., 2018). In consequence, 521 

model responses (in our case yield) from non-dominant areas of the grid cell will not be 522 

reproduced at large scale. The effect of different aggregation or scaling approaches on soil 523 

hydraulic properties has been studied by Montzka et al. (2017) but the propagation of the 524 

different outputs through non-linear models such as crop growth models has not been 525 

analyzed.  526 



The application of soil data aggregation to coarser resolution has considerable impact on 527 

simulated crop yields and induces biased results at the regional scale at coarser resolutions. 528 

Therefore, in the next chapter, the quantification of the aggregation error in simulated crop 529 

yields for maize (spring crop) and winter wheat (winter crop) will be discussed. 530 

4.2 Aggregation error on crop yield simulations  531 

4.2.1 Winter wheats 532 

The aggregation effect of climate data (Angulo et al., 2013) was evaluated for winter wheat 533 

for a Scandinavian region in Finland. The aggregation effect of soil data (Angulo et al., 2014) 534 

on crop yield simulation of winter wheat was evaluated for a region with a temperate climate 535 

in Germany. Angulo et al. (2014) used the frequency distribution of crop yields as a 536 

characteristic finger print to compare the effect of input data aggregation between crop 537 

models and input data resolutions. They found that finger prints were similar for the different 538 

resolutions of climate input data while they varied across the different models applied. In line 539 

with these results, the yield distribution of winter wheat in NRW did not differ much between 540 

different resolutions of climate input, however, in Tuscany, the range of the frequency 541 

distribution and the mean percentage of absolute yield difference increased with decreasing 542 

resolution of climate input data (Fig. 12B, climate aggregation panel). Aggregating soil types 543 

at 1 km2 resolution to the dominant soil in a coarser grid cell without aggregating the climate 544 

variables, tends to cause a positive bias in wheat yields in both regions (Figure 11A and B, 545 

row 2). This indicates that in both regions the more productive soils for winter wheat were 546 

dominant in most of the grid cells in the different resolutions. However, there were two 547 

instances where the positive wheat yield bias decreased when changing from the 10 km 548 

resolution (S10 x Cz ) to the 25 km resolution (S25 x Cz) in both regions. Additionally, the 549 

combination of dominant soil at regional level with aggregated climate for both regions 550 

showed positive yield bias for winter wheat simulation. This indicates the characteristics of 551 



aggregated soil at regional level is highly productive and simulate positive yield bias. If the 552 

aggregated soil at regional level would have been selected with less productive soil, there is 553 

also chance of simulating negative yield bias. However, the study is majorly focuses on 554 

quantifying the absolute yield difference as indicator of aggregation error rather than yield 555 

bias at different soil and climate resolution.     556 

 557 

In NRW, the range and the mean of the percentage absolute yield difference increased when 558 

both soil and climate input data were aggregated while in Tuscany only the mean of 559 

percentage absolute yield difference increased but not the range. For winter wheat, the 560 

aggregation effect on the ensemble yield due to aggregated climate data (1 to 100 km), 561 

quantified as relative average absolute deviation (rAAD), was maximum up to 10 % (Zhao et 562 

al., 2015a) with mean of 3-5 % for NRW while we have found maximum rAAD of 38% and 563 

50% for NRW and Tuscany respectively and around 15% for the ensemble mean in both 564 

regions (Fig. 13). These values did not change when combinations of aggregated soil and 565 

climate data were used in the ensemble simulations. Thus, for winter wheat, the average error 566 

of climate data aggregation combined with regional soil type over the model ensemble is 567 

between 10 and 15 % in both regions. However, the uncertainties in the aggregation error for 568 

winter wheat yields are higher in Tuscany as shown in the wider range of the mean absolute 569 

yield difference and the relative rAAD in Tuscany (Fig. 12 and 13). Thus, the uncertainty in 570 

the  aggregation effect for the winter crop in the temperate regions due to input data 571 

aggregation (irrespective of climate or soil data) is lower compared to the Mediterranean 572 

region probably due to the, on average, positive climatic water balance and the higher water 573 

holding capacity (Hoffmann et al., 2015).  574 

With respect to the differences in aggregation error for simulated wheat yields between the 575 

single models, there is no evident consistency in the obtained results, except that the EPIC 576 



model could be classified as more sensitive to soil and climate data aggregation, having both 577 

in Tuscany and NRW relative rAADs above the ensemble mean, whereas the STICS model 578 

belongs to the less sensitive models with relative rAADs close to the ensemble mean. This 579 

may be due to differences in reference evapotranspiration (Penman-Monteith against 580 

Priestley- Taylor) and in approaches to calculate light absorption (one leaf versus multi-layer 581 

approach) (Brisson et al., 1998).  582 

4.2.2 Silage maize 583 

The mere aggregation of the soil types according to the dominant soil in the coarser grid cell, 584 

caused a positive bias in silage maize yields in both regions (Figure 8A and B, row 2) as 585 

previously observed for wheat yields. In both regions, the more productive soils seem to be 586 

dominant in most of the grid cells, although the positive bias strongly decreased in Tuscany 587 

from a mean yield difference of 1.24 t ha-1 to 0.43 t ha-1 when changing from the 1 km 588 

resolution (S1 x CTUS ) to the 25 km resolution (S25 x CTUS ). 589 

The combined aggregation of soil and climate input data caused an increase in median and 590 

average relative yield difference of silage maize with decreasing resolution (Fig. 9). This has 591 

been already shown by Hoffman et al. (2016) for NRW. However, in contrast, to the winter 592 

crop (wheat), the range and mean relative yield differences due to climate and soil input data 593 

aggregation for silage maize was much higher in Tuscany compared to NRW. This 594 

observation was also made when only climate input data were aggregated. Thus, irrespective 595 

of the kind of input data aggregated, simulated maize yields in the Mediterranean region 596 

showed higher relative yield differences compared to the temperate region already at 597 

resolutions of 10 km. At a resolution of 100 km, the relative yield differences were higher by 598 

a factor of up to 3 compared to the temperate region when both soil and climate data were 599 

aggregated (Fig. 9). This has been corroborated by the results published by Folberth et al. 600 

(2014) for the US and could be explained by the difference in climate conditions between the 601 



temperate and Mediterranean site, which is higher during the vegetation period of the spring 602 

crops compared to the winter crop (Table 5). The average precipitation in Tuscany and NRW 603 

during the growing period of silage maize is around 350 mm in both regions, whereas the 604 

mean temperature is much lower in the temperate region (15.7 and 21.7 °C in NRW and 605 

Tuscany respectively). Thus, warmer and drier conditions during the growing period tend to 606 

translate into higher aggregation errors in regional crop simulations.  These results are 607 

confirmed by the higher relative rAAD of ensemble yields of maize compared to winter wheat 608 

in both regions (Fig. 10 and 13). With respect to maize yields, relative rAAD in Tuscany 609 

increases stronger compared to NRW when the resolution of input data is decreasing (Fig. 610 

10). In both regions, the increase in relative rAAD from fine to coarse resolution is strongest 611 

when aggregation of climate data is combined with aggregation of soil input data and can 612 

reach an average relative rAAD of the ensemble mean of 25%. Extreme model-dependent 613 

relative rAAD for maize yields can reach 58% in Tuscany compared 38% in NRW. In the 614 

case of the spring crop (maize), the aggregation error of the ensemble mean reaches already 615 

20% when a resolution of 10 km for the soil or climate data is used, whereas in NRW such 616 

high aggregation errors are never reached with simulated maize yields regardless of the spatial 617 

resolution of soil and climate data. These results suggest that reliable regional simulation of 618 

spring crop yield in Mediterranean climate conditions requires high spatial resolution of both 619 

soil and climate data. 620 

Looking at the differences between the individual models in the aggregation error for 621 

simulated maize yields, DailyDayCent seems to be most sensitive to soil aggregation or the 622 

combined aggregation of soil and climate input data both in NRW (together with EPIC) and 623 

in Tuscany (Fig. 13). In NRW, this is consistent with the findings for maize yield simulations 624 

(Fig. 10). Thus, there is no single explanation which can explain the differences in sensitivity 625 

to input data aggregation among the individual models. This may require further analysis of 626 

relationships between aggregation errors and modeling approaches of certain processes. 627 



4.3 Hotspots of aggregation errors 628 

Looking at the spatial variability of the average yield differences (Fig. 8 and 11), we were 629 

able to identify several hotspots where the simulated yields of both crops were very sensitive 630 

to data aggregation by producing large  in yield differences (-6 to 6 t ha-1 for silage maize, -2 631 

to 2 t ha-1 for winter wheat) (Fig. 8 and 11). In NRW, the spatial patterns of yield differences 632 

due to the simultaneous aggregation of soil and climate input data (Fig. 8 and 11 Panel A, first 633 

row) and due to aggregation of soil input data only (Fig. 8 and 11 Panel A, second row) are 634 

similar for both crops. The largest wheat and maize yield differences in NRW due to 635 

aggregation of soil are found in the Northeast and in two smaller areas in the Northwest and 636 

Central-South with average yield difference of more than 3 t ha-1 in the case of maize. This 637 

indicates that aggregation of soil data is the main driver to induce aggregation errors in NRW. 638 

In Tuscany, a similar trend is observed with stronger spatial differentiation of yield 639 

differences due to aggregation of soil input data or the combination of soil and climate input 640 

data (Fig. 8 and 11 Panel B, first and second row). However, in Tuscany, the hot spots with 641 

highest yield differences for maize depend on the resolution, with underestimations being 642 

concentrated in the Center and Northwest of Tuscany for resolutions of 10 and 25 km and 643 

with underestimations in the Central and Southern part of Tuscany and overestimations in the 644 

North for resolutions of 50 and 100 km. In the case of winter wheat, the location of hot spots 645 

is similar, but overestimations with strongly positive yield differences are more prominent in 646 

the Northern part of Tuscany toward the Northern mountain ranges. In the Northern mountain 647 

region with sharp spatial gradients of temperature, the aggregation of climate input data by 648 

the average method eliminates the extreme values which exist at 1 km resolution (Hoffmann 649 

et al., 2015) and results in on average moderate temperature for coarser resolutions. Thus, 650 

aggregation in the mountain regions produces more favourable environmental conditions in 651 

the input data set of the coarser resolutions leading to higher simulated crop yields. While in 652 

the central and Southern part of Tuscany, aggregation of climate data causes negative yield 653 



differences because small hilly areas with higher precipitation are averaged out, leading to on 654 

average lower precipitation at coarser resolutions. 655 

4.4 Influence of the range in altitude on the magnitude of aggregation errors 656 

As the effects of climate input data aggregation on aggregation errors in crop yields is 657 

obviously stronger in Tuscany, it could be argued that this is due the topographically stronger 658 

climatic gradient within Tuscany. The range in altitude is larger in Tuscany (0-1875 m) 659 

compared to NRW (0-845). However, if we eliminate the grid cells in Tuscany which have an 660 

elevation above 845 m, to have a comparable range of altitude in both regions, the 661 

aggregation effects of soil and climate input on crop yields are still significantly different 662 

between the two regions (Fig. S1, 10 and 13). For simulated wheat yields, the rAADs in the 663 

coarser resolutions (50 and 100 km) even increase when eliminating grids with altitudes 664 

greater than 845 m.  This supports our findings that the higher aggregation effects in Tuscany 665 

compared to NRW are mainly due to the differences in climatic conditions. 666 

5 Conclusion 667 

The aggregation effects of soil and climate data on crop yield simulations in the 668 

Mediterranean region are higher than in the temperate region for both winter wheat and silage 669 

maize. However, the differences between the Mediterranean and the temperate region are 670 

stronger in the case of the spring crop (silage maize). The magnitude of the aggregation effect 671 

in Tuscany for silage maize expressed as the percentage absolute yield difference is on 672 

average 30% compared to an average of 10 % for winter wheat. Because of the higher 673 

aggregation effect on crop yield simulation in the Mediterranean region, it is important in 674 

these regions to use input data at a finer resolution for reliable estimation of regional crop 675 

yield. Moreover, in each region, there are hot spots with extremely high positive or negative 676 

yield differences due to input data aggregation. In these hot spots, a finer resolution of climate 677 

and in particular soil information is important to reduce errors in crop yield simulations. For 678 



generalization of these outcomes, further investigations in other sub-humid or semi-arid 679 

regions will be necessary. 680 
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Table 1.  Main  climatic variables for the time period 1995 to 2011 for NRW and TUS. Mean is 835 

the arithmetic mean, STD is the standard deviation, and 25, 50, 75 % are the respective 836 

percentiles (Mean annual values and temporal variability) 837 

Climate variable* Summary statistics for climate variables  

NRW 
 

Mean STD Minimum 25 % 50 % 75 % Maximum 

TempMin (oC)  5.6 0.7 3.9 5.4 5.6 6.0 6.7 

TempMean (oC)  9.6 0.7 7.6 9.4 9.6 10.1 10.3 

TempMax (oC)  13.7 0.8 11.5 13.5 13.9 14.2 14.7 

Radiation(MJ m-2 d-1)  10.4 0.4 9.6 10.1 10.4 10.6 11.5 

Windspeed (m s-1)  2.6 0.1 2.4 2.5 2.6 2.7 2.8 

Precipitation (mm y-1)  821.1 117.3 659.1 752.3 801.3 861.7 1022.5 

ET0  986.6 56.3 875.7 947.7 986.4 1019.2 1100.2 

cwb  165 147 -122 101 197 231 425 

Tuscany 
 

Mean STD Minimum 25 % 50 % 75 % Maximum 

TempMin (oC)  8.8 0.4 8.0 8.7 8.8 9.1 9.3 

TempMean (oC)  16.1 0.5 15.1 15.8 16.2 16.5 16.8 

TempMax (oC)  18.6 0.6 17.4 18.1 18.7 19.0 19.4 

Radiation(MJ m-2 d-1)  14.2 0.5 12.8 14.0 14.3 14.5 15.1 

Windspeed (m s-1)  2.0 0.1 1.7 1.9 2.0 2.1 2.3 

Precipitation (mm y-1)  949.4 192.5 667.8 809.1 967.8 1035.6 1424.8 

ET0 (mm y-1)  1495.8 64.3 1335.3 1460.8 1524.3 1531.8 1626.1 

cwb (mm y-1)  546 244 -89 441 527 733 858 

*TempMin: Minimum Temperature, TempMean: Mean Temperature, TempMax: Maximum 838 

Temperature, ET0: Reference Evapotranspiration (calculated by using ET0 equation in FAO 56) , cwb: 839 

Climate water balance (ET0 − Precipitation) and others are as indicated 840 

 841 

 842 



 843 

 844 

Table: 2. Total soil depth and soil properties of the top soil layer in NRW and Tuscany 845 

at 1x1 km resolution 846 

NRW 
Number 

of pixels  
mean std min 25% 50% 75% max 

Depth [m] 

34168 

0.29 0.03 0.10 0.30 0.30 0.30 0.30 

Sand [%] 37.66 29.76 5.00 15.00 18.00 64.00 92.00 

BD [g cm-3] 1.40 0.02 0.56 1.40 1.40 1.40 1.40 

Wilting point 

[m3 m-3] 
0.14 0.06 0.04 0.09 0.16 0.18 0.29 

Field capacity 

[m3 m-3] 
0.26 0.08 0.12 0.20 0.29 0.33 0.39 

         

TUS 
Number 

of pixels  
mean std min 25% 50% 75% max 

Depth [m] 

22933 

0.49 0.04 0.18 0.50 0.50 0.50 0.50 

Sand [%] 33.27 16.51 2.00 22.25 30.75 46.80 89.75 

BD [g cm-3] 1.38 0.12 0.73 1.34 1.40 1.46 1.71 

Wilting point 

[m3 m-3] 
0.10 0.02 0.05 0.08 0.10 0.12 0.20 

Field capacity 

[m3 m-3] 
0.26 0.04 0.06 0.24 0.27 0.28 0.38 

 847 

Table 3: Summary of climatic condition during the growing period of silage maize and winter wheat for 848 

NRW and Tuscany (1995-2011) 849 

 850 

Climate variable Summary statistics for climate variables during maize growing season 

NRW  Mean STD Minimum 25 % 50 % 75 % Maximum 

TempMin (oC)  10.6 0.6 9.5 10.3 10.6 11.0 11.6 

TempMean (oC)  15.7 0.6 14.2 15.3 15.7 15.9 17.2 

TempMax (oC)  20.9 0.8 19.2 20.5 20.8 21.2 22.9 

Radiation(MJ m-2 d-1)  16.8 0.7 15.4 16.3 16.8 17.2 18.1 

Windspeed (m s-1)  2.3 0.1 2.1 2.2 2.3 2.4 2.6 

Precipitation (mm y-1)  357.6 56.3 276.2 316.4 356.3 378.2 496.2 

ET0  686.0 40.2 616.3 670.8 685.7 708.0 770.0 



cwb  328.4 85.8 174.7 286.2 324.3 385.4 469.8 

Tuscany  Mean STD Minimum 25 % 50 % 75 % Maximum 

TempMin (oC)  13.1 0.6 12.1 12.6 13.1 13.4 14.4 

TempMean (oC)  21.7 0.8 20.4 21.1 21.5 22.1 23.6 

TempMax (oC)  24.6 0.9 23.2 23.8 24.5 24.9 26.6 

Radiation(MJ m-2 d-1)  21.2 0.6 19.5 20.8 21.3 21.6 22.2 

Windspeed (m s-1)  1.9 0.1 1.7 1.8 1.9 2.0 2.1 

Precipitation (mm y-1)  354.3 88.7 219.4 315.3 323.9 397.1 531.7 

ET0 (mm y-1)  1130.3 47.2 1033.7 1098.6 1141.3 1156.6 1237.8 

cwb (mm y-1)  776.0 130.0 502.0 721.7 785.5 838.3 1018.4 

                  

Climate variable Summary statistics for climate variables during wheat growing season 

NRW  Mean STD Minimum 25 % 50 % 75 % Maximum 

TempMin (oC)  4.4 0.9 2.8 3.9 4.3 5.1 6.3 

TempMean (oC)  8.2 0.9 6.5 7.8 8.2 8.6 10.3 

TempMax (oC)  12.1 0.9 10.3 11.8 12.2 12.5 14.3 

Radiation(MJ m-2 d-1)  9.6 1.4 4.6 9.5 9.8 10.0 12.2 

Windspeed (m s-1)  2.7 0.2 2.4 2.6 2.7 2.8 3.0 

Precipitation (mm y-1)  632.0 151.4 194.0 587.5 674.8 692.3 801.0 

ET0 (mm y-1)  710.0 151.7 133.3 710.5 739.7 779.5 825.8 

cwb (mm y-1)  78.0 106.7 -69.7 12.3 65.6 148.3 292.3 

Tuscany  Mean STD Minimum 25 % 50 % 75 % Maximum 

TempMin (oC)  5.7 0.7 4.2 5.3 5.9 6.1 7.3 

TempMean (oC)  12.5 0.8 10.6 11.9 12.6 12.8 14.2 

TempMax (oC)  14.7 0.9 12.7 14.1 14.9 15.2 16.4 

Radiation(MJ m-2 d-1)  11.9 1.9 5.3 11.8 12.1 12.6 14.4 

Windspeed (m s-1)  2.1 0.2 1.8 2.0 2.1 2.2 2.4 

Precipitation (mm y-1)  591.7 188.3 104.4 506.6 566.5 683.1 901.9 

ET0 (mm y-1)  697.9 164.6 83.5 696.1 739.8 768.0 810.5 

cwb (mm y-1)  106.2 163.5 -252.5 10.6 89.4 255.7 358.0 
*TempMin: Minimum Temperature, TempMean: Mean Temperature, TempMax: Maximum Temperature, ET0: Reference 851 

Evapotranspiration, cwb: Climate water balance (ET0 − Precipitation) and others are as indicated 852 

Table 4. List of crop models used in the model ensemble 853 

No. Model Model 

abbreviation  in 

text and figures 

References 

1 AgroC b AGROC (Herbst et al., 2008, Klosterhalfen et al., 2017) 

2 Century CENT (Parton et al. 1992) 



3 CoupModel ab COUP (Janssen 2012, Conrad and Fohrer, 2009) 

4 DailyDayCent DayC (Del Grosso et al., 2001, 2006)  

9 EPIC v. 0810 EPIC (Williams 1995) 

6 HERMES b HERM (Kersebaum, 2007, 2011)  

7 MONICA b MONI (Nendel et al., 2011; Specka et al., 2015) 

8 SIMPLACE<LINTUL5;SLIM> LINT (Gaiser et al., 2013; Shibu et al., 2010) 

9 STICS STIC (Bergez et al., 2013; Brisson et al., 2009, 1998) 

a only simulated wheat; b simulated NRW only 854 

Table 5. Crop management of winter wheat and silage maize in Tuscany. 855 

Management Winter wheat Silage maize Unit  

Residues 

cut and incorporated into 

soil 

Cut and incorporated into 

soil 
-   

Tillage 

plough in late 

summer/beginning of 

autumn (harrowing in the 

plains) 

plough in late 

summer/beginning of 

autumn (ripping in the 

plains) 

-   

Sowing date 10-Nov 03-Apr date   

Harvest date 25-Jun 03-Oct date   

Plant density 400 8 m-2 emerging plants 

Sowing depth 3 3 cm   

 856 

Table 6. Crop management of winter wheat and silage maize in NRW 857 

Management Winter wheat Silage maize Unit   

Residues 

straw is removed, stubbles are 

left on the field (10% of 

the above ground total 

biomass and the roots) 

straw is removed, stubbles are 

left on the field (10% of 

the above ground total 

biomass and the roots) 

-   

Tillage ploughing in autumn ploughing in autumn -   

Sowing date Oct-01 Apr-20 date   

Harvest date Aug-01 Sep-20 date   

Plant density 400 10 1/m2 emerging plants 

Sowing depth 4 6 cm   

 858 

Table 7. The abbreviation for input data combination of soil and climate data at different resolutions.  859 

*Soil resolution km *Climate resolution km SoilxClimate Remarks 

y z SyxCz soil and climate aggregation 

SReg z SRegxCz One dominant regional soil with 



climate aggregation 

y CReg SyxCReg 
soil aggregation with average regional 

climate 
* the subscripts y and z represents the resolution for soil and climate at 1, 10, 25, 50 and 100 km, SReg and CReg 860 
are symbols to represents regional soil and climate (eg. STus and CTus to represent for regional soil and regional 861 
climate for Tuscany). 862 
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Figure 1. Geographic location of the study regions and the elevation variability for NRW, 865 

(Germany) and Tuscany (Italy). 866 

Figure 2. Soil type for NRW aggregated according to dominant soil types for resolutions from 1 867 

km to 100 km (Hoffmann et al., 2016). 868 

Figure 3. USDA soil texture class of the topsoil aggregated by dominant soil type from 1 km 869 

resolution. 870 

Figure 4. Average  minimum, mean and maximum temperature in Tuscany for the time period 1995-2013 871 

at spatial resolutions from 1 km to 100 km 872 

Figure 5. Sketch of the modelling framework used in this study. Combination of soil and climate data at 873 

different aggregation level are distributed to the model ensemble. The collected outputs of all models were 874 

averaged to obtain the model ensemble mean. 875 

Figure 6. Ensemble mean crop yields for silage maize for NRW (A) and for Tuscany (B) under water-876 

limited conditions for different levels of aggregation of soil and climate data. In each panel, the 1st row 877 

represents the ensemble mean yield for simultaneous aggregation of soil and climate data (SyxCz), 2nd row 878 

for aggregation of soil input data with the same regional mean climate data as SyxCReg and 3rd row for the 879 

aggregation of climate data with regional dominant soil type as SRegxCz. 880 

Figure 7. Ensemble mean crop yields for for winter wheat for NRW (A) and for Tuscany (B) for different 881 

levels of aggregation of soil and climate data. In each panel, the 1st row represent the ensemble mean  882 

yields for simultaneous aggregation of soil and climate input data (SyxCz), 2nd row for aggregation of soil 883 

with  with constant regional mean climate (SyxCReg) and 3rd row aggregation of climate input data  with 884 

regional dominant soil type as (SRegxCz). 885 

Figure 8.   Average yield difference between coarser resolutions (SyxCz) and the reference resolution 886 

(S1xC1) for silage maize for NRW (A) and for Tuscany (B). 887 

Figure 9. Percentage absolute difference for silage maize yields comparing coarser resolutions (SyxCz) 888 

with the reference resolution (S1xC1) for NRW and Tuscany. The violin plots show in the x-dimension the 889 

distribution of the probability density of the percentage absolute yield difference values. The box plots 890 



show the median (red line), mean (black star), and the upper and lower quartiles (box) and the extreme 891 

upper and lower values (black lines) 892 

Figure 10. The relative average absolute yield deviation (rAAD) as indicator for the impact of soil and 893 

climate input data aggregation on silage maize yield simulations by different crop models as well as for the 894 

model ensemble mean (ESMB) 895 

Figure 11. Average yield difference between coarser resolutions (SyxCz) and the reference resolution 896 

(S1xC1) for winter wheat for NRW (A) and winter wheat for Tuscany (B). AMD is the average yield 897 

difference 898 

Figure 12. Percentage absolute yield differences of winter wheat between coarser resolutions (SyxCz) and 899 

the reference resolution  (S1xC1) for NRW and Tuscany. The violin plots show in the x-dimension the 900 

distribution of the probability density of the percentage absolute yield difference values. The box plots 901 

show the median (red line), mean (black star), and the upper and lower quartiles (box) and the extreme 902 

upper and lower values (black lines) 903 

Figure 13. The relative average absolute yield deviation (rAAD) as indicator for the impact of soil and 904 

climate input data aggregation on winter wheat yield simulations by different crop models as well as for 905 

the model ensemble mean (ESMB). 906 


