666 research outputs found

    Self-consistent simulation of quantum shot noise in nanoscale electron devices

    Get PDF
    An approach for studying shot noise in mesoscopic systems that explicitly includes the Coulomb interaction among electrons, by self-consistently solving the Poisson equation, is presented. As a test, current fluctuations on a standard resonant tunneling diode are simulated in agreement with previous predictions and experimental results. The present approach opens a new path for the simulation of nanoscale electron devices, where pure quantum mechanical and Coulomb blockade phenomena coexist

    Investigating the high-frequency spectral features of SNRs Tycho, W44 and IC443 with the Sardinia Radio Telescope

    Full text link
    The main characteristics in the radio continuum spectra of Supernova Remnants (SNRs) result from simple synchrotron emission. In addition, electron acceleration mechanisms can shape the spectra in specific ways, especially at high radio frequencies. These features are connected to the age and the peculiar conditions of the local interstellar medium interacting with the SNR. Whereas the bulk radio emission is expected at up to 205020-50 GHz, sensitive high-resolution images of SNRs above 10 GHz are lacking and are not easily achievable, especially in the confused regions of the Galactic Plane. In the framework of the early science observations with the Sardinia Radio Telescope in February-March 2016, we obtained high-resolution images of SNRs Tycho, W44 and IC443 that provided accurate integrated flux density measurements at 21.4 GHz: 8.8 ±\pm 0.9 Jy for Tycho, 25 ±\pm 3 Jy for W44 and 66 ±\pm 7 Jy for IC443. We coupled the SRT measurements with radio data available in the literature in order to characterise the integrated and spatially-resolved spectra of these SNRs, and to find significant frequency- and region-dependent spectral slope variations. For the first time, we provide direct evidence of a spectral break in the radio spectral energy distribution of W44 at an exponential cutoff frequency of 15 ±\pm 2 GHz. This result constrains the maximum energy of the accelerated electrons in the range 6136-13 GeV, in agreement with predictions indirectly derived from AGILE and \textit{Fermi}-LAT gamma-ray observations. With regard to IC443, our results confirm the noticeable presence of a bump in the integrated spectrum around 207020-70 GHz that could result from a spinning dust emission mechanism.Comment: 12 pages, 9 figure

    On the Angular Resolution of the AGILE gamma-ray imaging detector

    Get PDF
    We present a study of the Angular Resolution of the AGILE gamma-ray imaging detector (GRID) that is operational in space since April 2007. The AGILE instrument is made of an array of 12 planes each equipped with a Tungsten converter and Silicon micros trip detectors and is sensitive in the energy range 50 MeV - 10 GeV. Among the space instruments devoted to gamma-ray astrophysics, AGILE uniquely exploits an analog readout system with dedicated electronics coupled with Silicon detectors. We show the results of Monte Carlo simulations carried out to reproduce the gamma-ray detection by the GRID, and we compare them to in-flight data. We use the Crab (pulsar + Nebula) system for discussion of real data performance, since its E^{-2} energy spectrum is representative of the majority of gamma-ray sources. For Crab-like spectrum sources, the GRID angular resolution (FWHM of ~4deg at 100 MeV; ~0.8deg at 1 GeV; ~0.9deg integrating the full energy band from 100 MeV to tens of GeV) is stable across a large field of view, being characterized by a flat response up to 30deg off-axis. A comparison of the angular resolution obtained by the two operational gamma-ray instruments, AGILE-GRID and Fermi-LAT, is interesting in view of future gamma-ray missions, that are currently under study. The two instruments exploit different detector configurations affecting the angular resolution: the former being optimized in the readout and track reconstruction especially in the low-energy band, the latter in terms of converter thickness and power consumption. We show that, despite these differences, the angular resolution of both instruments is very similar between 100 MeV and a few GeV.Comment: 19 pages, 8 figures, accepted for publication in Ap

    The Agile Alert System For Gamma-Ray Transients

    Full text link
    In recent years, a new generation of space missions offered great opportunities of discovery in high-energy astrophysics. In this article we focus on the scientific operations of the Gamma-Ray Imaging Detector (GRID) onboard the AGILE space mission. The AGILE-GRID, sensitive in the energy range of 30 MeV-30 GeV, has detected many gamma-ray transients of galactic and extragalactic origins. This work presents the AGILE innovative approach to fast gamma-ray transient detection, which is a challenging task and a crucial part of the AGILE scientific program. The goals are to describe: (1) the AGILE Gamma-Ray Alert System, (2) a new algorithm for blind search identification of transients within a short processing time, (3) the AGILE procedure for gamma-ray transient alert management, and (4) the likelihood of ratio tests that are necessary to evaluate the post-trial statistical significance of the results. Special algorithms and an optimized sequence of tasks are necessary to reach our goal. Data are automatically analyzed at every orbital downlink by an alert pipeline operating on different timescales. As proper flux thresholds are exceeded, alerts are automatically generated and sent as SMS messages to cellular telephones, e-mails, and push notifications of an application for smartphones and tablets. These alerts are crosschecked with the results of two pipelines, and a manual analysis is performed. Being a small scientific-class mission, AGILE is characterized by optimization of both scientific analysis and ground-segment resources. The system is capable of generating alerts within two to three hours of a data downlink, an unprecedented reaction time in gamma-ray astrophysics.Comment: 34 pages, 9 figures, 5 table

    Imaging of SNR IC443 and W44 with the Sardinia Radio Telescope at 1.5 GHz and 7 GHz

    Get PDF
    Observations of supernova remnants (SNRs) are a powerful tool for investigating the later stages of stellar evolution, the properties of the ambient interstellar medium, and the physics of particle acceleration and shocks. For a fraction of SNRs, multi-wavelength coverage from radio to ultra high-energies has been provided, constraining their contributions to the production of Galactic cosmic rays. Although radio emission is the most common identifier of SNRs and a prime probe for refining models, high-resolution images at frequencies above 5 GHz are surprisingly lacking, even for bright and well-known SNRs such as IC443 and W44. In the frameworks of the Astronomical Validation and Early Science Program with the 64-m single-dish Sardinia Radio Telescope, we provided, for the first time, single-dish deep imaging at 7 GHz of the IC443 and W44 complexes coupled with spatially-resolved spectra in the 1.5-7 GHz frequency range. Our images were obtained through on-the-fly mapping techniques, providing antenna beam oversampling and resulting in accurate continuum flux density measurements. The integrated flux densities associated with IC443 are S_1.5GHz = 134 +/- 4 Jy and S_7GHz = 67 +/- 3 Jy. For W44, we measured total flux densities of S_1.5GHz = 214 +/- 6 Jy and S_7GHz = 94 +/- 4 Jy. Spectral index maps provide evidence of a wide physical parameter scatter among different SNR regions: a flat spectrum is observed from the brightest SNR regions at the shock, while steeper spectral indices (up to 0.7) are observed in fainter cooling regions, disentangling in this way different populations and spectra of radio/gamma-ray-emitting electrons in these SNRs.Comment: 13 pages, 9 figures, accepted for publication to MNRAS on 18 May 201

    Direct Evidence for Hadronic Cosmic-Ray Acceleration in the Supernova Renmant IC 443

    Full text link
    The Supernova Remnant (SNR) IC 443 is an intermediate-age remnant well known for its radio, optical, X-ray and gamma-ray energy emissions. In this Letter we study the gamma-ray emission above 100 MeV from IC 443 as obtained by the AGILE satellite. A distinct pattern of diffuse emission in the energy range 100 MeV-3 GeV is detected across the SNR with its prominent maximum (source "A") localized in the Northeastern shell with a flux F = (47 \pm 10) 10^{-8} photons cm^{-2} s^{-1} above 100 MeV. This location is the site of the strongest shock interaction between the SNR blast wave and the dense circumstellar medium. Source "A" is not coincident with the TeV source located 0.4 degree away and associated with a dense molecular cloud complex in the SNR central region. From our observations, and from the lack of detectable diffuse TeV emission from its Northeastern rim, we demonstrate that electrons cannot be the main emitters of gamma-rays in the range 0.1-10 GeV at the site of the strongest SNR shock. The intensity, spectral characteristics, and location of the most prominent gamma-ray emission together with the absence of co-spatial detectable TeV emission are consistent only with a hadronic model of cosmic-ray acceleration in the SNR. A high-density molecular cloud (cloud "E") provides a remarkable "target" for nucleonic interactions of accelerated hadrons: our results show enhanced gamma-ray production near the molecular cloud/shocked shell interaction site. IC 443 provides the first unambiguous evidence of cosmic-ray acceleration by SNRs.Comment: 5 pages, 2 figures; accepted by ApJLetters on Jan 21, 201

    Sardinia Radio Telescope wide-band spectral-polarimetric observations of the galaxy cluster 3C 129

    Get PDF
    We present new observations of the galaxy cluster 3C 129 obtained with the Sardinia Radio Telescope in the frequency range 6000-7200 MHz, with the aim to image the large-angular-scale emission at high-frequency of the radio sources located in this cluster of galaxies. The data were acquired using the recently-commissioned ROACH2-based backend to produce full-Stokes image cubes of an area of 1 deg x 1 deg centered on the radio source 3C 129. We modeled and deconvolved the telescope beam pattern from the data. We also measured the instrumental polarization beam patterns to correct the polarization images for off-axis instrumental polarization. Total intensity images at an angular resolution of 2.9 arcmin were obtained for the tailed radio galaxy 3C 129 and for 13 more sources in the field, including 3C 129.1 at the galaxy cluster center. These data were used, in combination with literature data at lower frequencies, to derive the variation of the synchrotron spectrum of 3C 129 along the tail of the radio source. If the magnetic field is at the equipartition value, we showed that the lifetimes of radiating electrons result in a radiative age for 3C 129 of t_syn = 267 +/- 26 Myrs. Assuming a linear projected length of 488 kpc for the tail, we deduced that 3C 129 is moving supersonically with a Mach number of M=v_gal/c_s=1.47. Linearly polarized emission was clearly detected for both 3C 129 and 3C 129.1. The linear polarization measured for 3C 129 reaches levels as high as 70% in the faintest region of the source where the magnetic field is aligned with the direction of the tail.Comment: 19 pages, 17 figures, accepted for publication in MNRA
    corecore