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Self-consistent simulation of quantum shot noise in nanoscale
electron devices
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(Received 11 May 2004; accepted 17 August 2004)

An approach for studying shot noise in mesoscopic systems that explicitly includes the Coulomb
interaction among electrons, by self-consistently solving the Poisson equation, is presented. As a
test, current fluctuations on a standard resonant tunneling diode are simulated in agreement with
previous predictions and experimental results. The present approach opens a new path for the
simulation of nanoscale electron devices, where pure quantum mechanical and Coulomb blockade
phenomena coexist. ©2004 American Institute of Physics. [DOI: 10.1063/1.1806546]

The time-dependent fluctuations of the electron current
in mesoscopic systems, i.e., the shot noise, are a direct con-
sequence of the quantum mechanical(QM) wave-particle
duality.1 Following this idea, we have recently developed an
approach2,3 to study shot noise in QM systems showing that
it can benaturally understood within the de Broglie–Bohm
(dBB) interpretation of the quantum theory.4,5 In particular,
we have shown that our approach2 provides identical predic-
tions as the ones obtained within the second quantization
framework1,6 for simple mesoscopic systems. In recent years,
shot noise approaches for phase-coherent devices, mainly
based on the second quantization formalism, have been
greatly developed in the literature.1,6–8 In these approaches,
the (nontrivial) electron–electron interaction has been only
considered through the assumption of a linear relationship
(i.e., a capacitance) between the charge and the voltage.7,8

The goal of the present letter is to show that our previous
approach2,3 can be generalized to study Coulomb interaction
among electrons by self-consistently solving the Poisson
equation.

Now, let us explain how the dynamics ofN interacting
electrons in a mesoscopic system are described within the
dBB formalism using a self-consistent solution of the Pois-
son equation. In principle, electrons are described by a gen-
eral wave function,Csx1,x2, . . .xN,td, solution of the many
particle time-dependent Schrödinger equation that explicitly
contains the Coulomb interaction in its Hamiltonian. By con-
struction, once the many-particle wave function is known, all
QM observable can be perfectly reproduced within the dBB
formalism.5 However, the practical computation of such
wave function is far from being trivial and some kind of
approximation is mandatory. In this regard, first, we consider
that the dynamics of eachxi electron can be described fromt
to t+dt by assuming that the rest of the electrons remain at
fixed positions. Thus, eachi-electron is associated to a wave
function, Cisxi ,td, solution of a single-particle Schrödinger
equation:9
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where,« is the dielectric constant,m is the electron effective
mass,q is its charge, andVsxid takes into account the exter-
nal electric potential. Each wave function,Cisxi ,td, does not
depend explicitly on other electron positions,xk, but (this is
the crucial point) a correlation between the wave functions
(i.e., between all electron dynamics) is contained in Eq.(1),
because the last term of the potential energy depends on all
electron positions. The dBB formalism has the technical ad-
vantage that the Schrödinger equations have to be solved
only for the particular points where Bohm trajectories
hx1std ,x2std , . . .xNstdj are defined,10 and not for all configura-
tions pointshx1,x2, . . .xN,tj. In order to further simplify the
computational burden associated with solvingN Schrödinger
equations, second, we assume that the potential energy,
Ecsx,td, is roughly identical for all electrons as defined by
expression(2b) [i.e., we neglect the conditionkÞ i in Eq.
(1)]. Therefore, the three self-consistent equations that we
solve in our approach are the following:
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Expression(2a) is the single-particle Schrödinger equation,
similar to Eq.(1) but with a unique time-dependent potential,
Eq. (2b) is just the Poisson equation(A is the lateral area of
the device)11 and Eq.(2c) is the Bohm velocity4,5 [defined as
the ratio between the QM particle current density,Jisx,td,
and the wave packet probability presence density] that deter-
mines the electron trajectory,xistd, by integration. Each
i-electron has its own particular boundary conditions for
solving the set of Eqs.(2a)–(2c) and, therefore, its own wave
function Cisxi ,td and its own Bohm trajectoryxistd. In sum-
mary, regarding the goal of the present letter, the dBB for-
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malism provides a simulation framework where:(i) all pure
QM phenomena, as tunneling, are perfectly reproduced in
terms of quantum trajectories,5 and(ii ) the Coulomb interac-
tion can be treated self-consistently via the Poisson equation
as in the standard classical-device Monte Carlo technique.

Now, let us emphasize the capabilities of our proposal
for dealing with the Poisson equation in a QM framework by
providing a numerical example. We study the current through
a resonant tunneling diode(RTD) which is a quantum-based
device that has been exhaustively investigated, both, from
theoretical8,12,13and experimental12–14points of view. We as-
sume a standard GaAs/AlAs heterostructure system withm
=0.067mo (mo being the free electron mass). We use room
temperature, 300 K, for all numerical simulations. The par-
ticular heterostructure considered here is a 6 nm intrinsic
GaAs quantum well, sandwiched between two AlxGa1−xAs
barriers of 2 nm width and 0.3 eV height. At each time step,
electrons are injected from emitter/collector contacts into the
simulating region according to model presented in Ref. 2.
Each i-electron of energyE, injected into the device, is as-
sociated with an initial Gaussian wave packet(with central
wave-vectork=Î2mE/" and spatial dispersions=16 nm)
defined deep inside the emitter or collector contacts, under
flat potential profiles.2,3

In order to be able to distinguish the effects originated
by the electron–electron interaction, first, we consider frozen
potentials[i.e, without using Eq.(2b) for self-consistence].
As depicted in the inset of Fig. 1(a), a linear potential profile
is assumed along the whole device region at any time. The
instantaneous current,Istd, is computed from the extension to
semiconductors, due to Pellegrini,15 of the Ramo–Shockley
theorem:

Istd =
q

L
o
i=1

Nstd

vistd, s3d

whereL is the length of the active device region,Nstd is the
total number of electrons which is instantaneously inside the
device, andvistd is the value of the Bohm velocity defined by
Eq. (2c). The time-averaged current,kIstdl, for each applied
bias is depicted in circles in Fig. 1(a). In the same picture, we
have also plotted the dc current obtained by time averaging
the net number of Bohm trajectories crossing the emitter
(vertical line) or the collector(horizontal line). Moreover, we
have also plotted the dc current computed from the well-
known Esaki formula.16 Let us just mention that the excellent
agreement between the four different calculations provides a
satisfactory test of the technical implementation of our for-
malism. In addition, within our approach, the total power
spectral density of the current fluctuations,Ssfd, is obtained
from the instantaneous currentIstd by simply using the stan-
dard numerical technique.17 The comparison of the noise
characteristics is carried out in terms of the Fano factor,F,
defined bySs0d=F ·2·q·kIstdl. It is well known that the ex-
planation of Fig. 1(b) is based on an interplay between two
different sources of noise:(i) The partition noise introduced
by the barriers, and(ii ) the thermal noise due to the injecting
statistics. For low bias,kIstdl tends to zero since it is com-
puted by subtracting the(almost identical) emitter and col-
lector currents, butSs0d is obtained by summing the fluctua-
tions of both currents. Therefore,F tends to diverge. For
higher voltages, the transmission coefficient of the barrier is
moderately high, and partition and thermal noises are mani-
fested in the value of the Fano factor. Hence, since these
sources of noise are described by a Binomial process,3 the
Fano factor approximates 1-D (whereD is the total probabil-
ity, proportional to the transmission coefficient and occupa-
tion function, that an electron can effectively cross the RTD).
Thus, the Fano factor, as a function of the applied bias, has
the same shape of the average current when flipped vertically
(upside down) as seen in Figs. 1(a) and 1(b). For voltages
higher than 0.3 V, the transmission coefficient is so low that
(even for high temperature) the total probability of traversing
the RTD is transformed from a binomial(probabilityD close
to 1.0) into a Poisson process(probability D close to zero)
and a Fano factor roughly equal to 1.0 is obtained. Let us
mention that highly doped emitter/collector regions(the
emitter/collector Fermi levels,EFE/EFC, are 0.05 eV above
their conduction-band minimum) are considered to assume
degenerate injection statistics. As an additional test, we have
plotted in Fig. 1(b) the Fano factor obtained from the original
expression provided by Buttiker6 in 1992 to describe parti-
tion and thermal noise in “frozen” mesoscopic systems
(dashed line).

In any case, we are interested in using our approach to
study how the Coulomb interaction among electrons can
modify the noise properties. The results depicted in Fig. 2 are
obtained by self-consistently solving Eqs.(2a)–(2c) for the
same RTD considered in Fig. 1. For simplicity, the self-
consistence is taken into account inside the 0,x,L region
[see inset in Fig. 1(a)]. For low doping conditions, the con-
sideration of the Coulomb interaction in the emitter/collector
region could modify the present results.18 The details on the
calculation will be explained elsewhere.10 In Fig. 2(a), we
have plottedkIstdl obtained within our approach with circles.

FIG. 1. (a) Current–voltage characteristic for a standard AlxGa1−xAs
2 nm/6 nm/2 nm RTD. The inset shows the static(frozen) potential profile.
The excellent agreement between the four different calculations of the av-
erage current shows a satisfactory test of the technical implementation of
our approach. In dashed line, results obtained from the Esaki(see Ref. 16)
expression.(b) In circles, numerical values of the Fano factor for each bias
point computed from our approach. In dashed line, results obtained from the
Buttiker (see Ref. 6) expression.
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Again, the horizontal and vertical lines correspond to the dc
current obtained from the net number of trajectories travers-
ing the emitter and collector contact, respectively. The effect
of the Coulomb correlation between electrons is clearly
manifested in the Fano factor depicted in Fig. 1(b). Just after
the resonant voltage(when the resonant energy,ER, is below
the conduction band at the emitter contact), the presence of
one electron inside the quantum well raisesER [see inset of
Fig. 2(b)]. Thus, the QM transmission for the next electron is
highly enhanced. Roughly speaking, the Coulomb interaction
affects the electron dynamics by trying to regroup the elec-
trons and providing a Fano factor higher than one. In fact,
the previous mechanism also modifies the resonant voltage
and the number of transmitted particles. For example, when
ER is just above the conduction band at the emitter contact
[see inset of Fig. 2(b)], the presence of an electron inside the
quantum well, raisesER making the probability of transmis-
sion for the next electron more difficult(less electrons with
this higher resonant energy are available). Consequently, at
low bias, the average current values in Fig. 2(a) are lower
than in Fig. 1(a). Finally, let us mention that the average
current and the Fano factor observed in Fig. 2 are in good
agreement with the experimental results obtained by
several different groups, with different resonant
heterostructures.12–14 Let us mention that scattering(apart
from the electron–electron interaction) is not considered here
and it can modify present results. In principle, our approach

can accurately deal with additional scattering mechanisms by
introducing their interaction/potential directly into the
Hamiltonian[Eq. (1)].

In conclusion, we have shown that our previous
approach2,3 for studying shot noise in terms of Bohm trajec-
tories can be generalized to include the Coulomb interaction
among electrons via the self-consistent solution of the Pois-
son equation. On the contrary, most QM noise approaches do
only take into account dynamical aspects of the Coulomb
(i.e., electron–electron) interaction through a simple linear
capacitance relationship. As a test, we have applied our ap-
proach to study current fluctuations on standard RTD and our
numerical results are in good agreement with previous
predictions8,12,13 and experimental results.12–14 We believe
that the present approach opens a new path for the simulation
of electron devices of nanometric dimensions. At such di-
mensions, pure QM effects(like tunneling or quantization)
coexist19,20 with classical electrostatic phenomena(such as
Coulomb blockade), and the ancient Poisson equation be-
comes as meaningful as the prevalent Schrödinger equation
for the correct understanding of actual mesoscopic devices.
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FIG. 2. (a) Current–voltage characteristic for the RTD described in Fig. 1
when the Poisson equation is solved self-consistently with the time-
dependent Schrödinger equation.(b) Fano factor for each bias point com-
puted within our approach. The insets show the effect of the time-dependent
variations of energy potential profile(due to the presence of an electron at
the quantum well) on the QM transmission of other electrons, before and
after the resonant voltage.
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