210 research outputs found

    Granin - Derived Peptides in the Eye

    Get PDF
    The granins are the acidic proteins of secretory granules and there exist three main members of this family, in particular chromogranin A, chromogranin B and secretogranin II. These proteins are widely distributed throughout neuroendocrine tissues and are stored in large dense core vesicles in neuronal cells. Their functional role is not fully clear but it seems that they might play an important role in the formation of secretory granules. Furthermore, the primary amino acid sequence of the granins features many pairs of basic amino acids and these pairs together with monobasic residues are targets of enzymes which proteolytically process the proteins, in particular the prohormone convertases 1 and 2. Thus the granins might be precursors of smaller fragments and they are indeed cleaved

    Generation of Arbitrary Frequency Chirps with a Fiber-Based Phase Modulator and Self-Injection-Locked Diode Laser

    Get PDF
    We present a novel technique for producing pulses of laser light whose frequency is arbitrarily chirped. The output from a diode laser is sent through a fiber-optical delay line containing a fiber-based electro-optical phase modulator. Upon emerging from the fiber, the phase-modulated pulse is used to injection-lock the laser and the process is repeated. Large phase modulations are realized by multiple passes through the loop while the high optical power is maintained by self-injection-locking after each pass. Arbitrary chirps are produced by driving the modulator with an arbitrary waveform generator

    2-laser injection-locking configuration for Brillouin fibre sensors

    Get PDF
    We propose in this paper a novel method for generating the pump and probe signals for a Brillouin fibre sensor. It is based on the injection locking of two distinct semiconductor lasers, that makes possible the generation of high purity beat signals in the microwave frequency range. Such a technique can be used either in the pulsed pump-probe technique or the new correlation-based technique. Furthermore novel devices, such as laser modules presenting integrated electro-absorption modulators, can be exploited for achieving efficient and cost effective injection locking scheme

    Novel schemes for optical signal generation using laser injection locking with application to Brillouin sensing

    Get PDF
    Injection locking of two DFB semiconductors opens new possibilities to generate effective signals for optical sensing, in order to reach better performances. Pure wave forms can be generated with qualities exceeding those obtained using external modulators. This is illustrated through the application to the distributed Brillouin sensing that shows significant progress with respect to established techniques. © 2004 IOP Publishing Ltd

    Novel measurement scheme for injection-locking experiments

    Get PDF
    A novel experimental setup for injection-locking experiments is presented. The single-mode-fiber-based configuration allows one to precisely control the power and the polarization state of the light injected from the master laser into the slave laser cavity. Different behaviors typical for injection locking with single-mode semiconductor lasers (e.g., stable injection locking, undamped relaxation oscillations, nearly degenerate four-wave mixing, period doubling, chaotic behavior) are experimentally observed and theoretically verified using a rate-equation-based model. Measurements and calculations are entirely linked analytically and thoroughly compared by means of the corresponding power spectra. The good quantitative agreement between measurements and model validates the model, the analytical approach, and the experimental setu

    High order amplitude equation for steps on creep curve

    Full text link
    We consider a model proposed by one of the authors for a type of plastic instability found in creep experiments which reproduces a number of experimentally observed features. The model consists of three coupled non-linear differential equations describing the evolution of three types of dislocations. The transition to the instability has been shown to be via Hopf bifurcation leading to limit cycle solutions with respect to physically relevant drive parameters. Here we use reductive perturbative method to extract an amplitude equation of up to seventh order to obtain an approximate analytic expression for the order parameter. The analysis also enables us to obtain the bifurcation (phase) diagram of the instability. We find that while supercritical bifurcation dominates the major part of the instability region, subcritical bifurcation gradually takes over at one end of the region. These results are compared with the known experimental results. Approximate analytic expressions for the limit cycles for different types of bifurcations are shown to agree with their corresponding numerical solutions of the equations describing the model. The analysis also shows that high order nonlinearities are important in the problem. This approach further allows us to map the theoretical parameters to the experimentally observed macroscopic quantities.Comment: LaTex file and eps figures; Communicated to Phys. Rev.
    • …
    corecore