67 research outputs found

    HIV-Specific T Cells Generated from Naive T Cells Suppress HIV In Vitro and Recognize Wide Epitope Breadths

    Get PDF
    The Berlin Patient represents the first and only functional HIV cure achieved by hematopoietic stem cell transplant (HSCT). In subsequent efforts to replicate this result, HIV rebounded post-HSCT after withdrawal of antiretroviral therapy. Providing HIV-specific immunity through adoptive T cell therapy may prevent HIV rebound post-HSCT by eliminating newly infected cells before they can seed systemic infection. Adoptive T cell therapy has demonstrated success in boosting Epstein-Barr virus and cytomegalovirus-specific immunity post-HSCT, controlling viral reactivation. However, T cell immunotherapies to boost HIV-specific immunity have been limited by single-epitope specificity and minimal persistence or efficacy in vivo. To improve this strategy, we sought to generate allogeneic HIV-specific T cells from human leukocyte antigen (HLA)-A02+ HIV-negative adult or cord blood donors. We focused on HLA-A02+ donors due to well-characterized epitope restrictions observed in HIV+ populations. We show that multi-antigen HIV-specific T cells can be generated from naive T cells of both cord blood and adults using a reproducible good manufacturing practice (GMP)-grade protocol. This product lysed antigen-pulsed targets and suppressed active HIV in vitro. Interestingly, these cells displayed broad epitope recognition despite lacking recognition of the common HLA-A02-restricted HIV epitope Gag SL9. This first demonstration of functional multi-antigen HIV-specific T cells has implications for improving treatment of HIV through allogeneic HSCT. Patel et al. demonstrate the ability to generate HIV-specific T cells from HIV-seronegative adults and cord blood with a good-manufacturing-practice-compliant strategy. These immunotherapies are multi-antigen specific, display cytotoxicity, and suppress HIV in vitro, providing a promising platform for adoptive T cell therapy in a post-transplant setting

    Structural basis for LMO2-driven recruitment of the SCL: E47bHLH heterodimer to hematopoietic-specific transcriptional targets

    Get PDF
    Cell fate is governed by combinatorial actions of transcriptional regulators assembling into multiprotein complexes. However, the molecular details of how these complexes form are poorly understood. One such complex, which contains the basic-helix-loop-helix heterodimer SCL:E47 and bridging proteins LMO2:LDB1, critically regulates hematopoiesis and induces Tcell leukemia. Here, we report the crystal structure of (SCL:E47)bHLH:LMO2:LDB1LID bound to DNA, providing a molecular account of the network of interactions assembling this complex. This reveals an unexpected role for LMO2. Upon binding to SCL, LMO2 induces new hydrogen bonds in SCL:E47, thereby strengthening heterodimer formation. This imposes a rotation movement onto E47 that weakens the heterodimer:DNA interaction, shifting the main DNA-binding activity onto additional protein partners. Along with biochemical analyses, this illustrates, at an atomic level, how hematopoietic-specific SCL sequesters ubiquitous E47 and associated cofactors and supports SCL'sreported DNA-binding-independent functions. Importantly, this work will drive the design of small molecules inhibiting leukemogenic processes. © 2013 The Authors

    The Isl1/Ldb1 complex orchestrates heart-specific chromatin organization and transcriptional regulation

    Get PDF
    Cardiac stem/progenitor cells hold great potential for regenerative therapies however the mechanisms regulating their expansion and differentiation remain insufficiently defined. Here we show that the multi-adaptor protein Ldb1 is a central regulator of cardiac progenitor cell differentiation and second heart field (SHF) development. Mechanistically, we demonstrate that Ldb1 binds to the key regulator of SHF progenitors Isl1 and protects it from proteasomal degradation. Furthermore, the Isl1/Ldb1 complex promotes long-range promoter-enhancer interactions at the loci of the core cardiac transcription factors Mef2c and Hand2. Chromosome conformation capture followed by sequencing identified surprisingly specific, Ldb1-mediated interactions of the Isl1/Ldb1 responsive Mef2c anterior heart field enhancer with genes which play key roles in cardiac progenitor cell function and cardiovascular development. Importantly, the expression of these genes was downregulated upon Ldb1 depletion and Isl1/Ldb1 haplodeficiency. In conclusion, the Isl1/Ldb1 complex orchestrates a network for heart-specific transcriptional regulation and coordination in three-dimensional space during cardiogenesis

    HOX-mediated LMO2 expression in embryonic mesoderm is recapitulated in acute leukaemias

    Get PDF
    The Lim Domain Only 2 (LMO2) leukaemia oncogene encodes an LIM domain transcriptional cofactor required for early haematopoiesis. During embryogenesis, LMO2 is also expressed in developing tail and limb buds, an expression pattern we now show to be recapitulated in transgenic mice by an enhancer in LMO2 intron 4. Limb bud expression depended on a cluster of HOX binding sites, while posterior tail expression required the HOX sites and two E-boxes. Given the importance of both LMO2 and HOX genes in acute leukaemias, we further demonstrated that the regulatory hierarchy of HOX control of LMO2 is activated in leukaemia mouse models as well as in patient samples. Moreover, Lmo2 knock-down impaired the growth of leukaemic cells, and high LMO2 expression at diagnosis correlated with poor survival in cytogenetically normal AML patients. Taken together, these results establish a regulatory hierarchy of HOX control of LMO2 in normal development, which can be resurrected during leukaemia development. Redeployment of embryonic regulatory hierarchies in an aberrant context is likely to be relevant in human pathologies beyond the specific example of ectopic activation of LMO2

    T-cell identity and epigenetic memory

    Get PDF
    T-cell development endows cells with a flexible range of effector differentiation options, superimposed on a stable core of lineage-specific gene expression that is maintained while access to alternative hematopoietic lineages is permanently renounced. This combination of features could be explained by environmentally responsive transcription factor mobilization overlaying an epigenetically stabilized base gene expression state. For example, "poising" of promoters could offer preferential access to T-cell genes, while repressive histone modifications and DNA methylation of non-T regulatory genes could be responsible for keeping non-T developmental options closed. Here, we critically review the evidence for the actual deployment of epigenetic marking to support the stable aspects of T-cell identity. Much of epigenetic marking is dynamically maintained or subject to rapid modification by local action of transcription factors. Repressive histone marks are used in gene-specific ways that do not fit a simple, developmental lineage-exclusion hierarchy. We argue that epigenetic analysis may achieve its greatest impact for illuminating regulatory biology when it is used to locate cis-regulatory elements by catching them in the act of mediating regulatory change
    corecore