61 research outputs found
The history of Lyme disease in Italy and its spread in the Italian territory
Lyme borreliosis (LB) is the most common vector-borne zoonotic inflammatory disease in the Northern Hemisphere. In Italy, the first case was diagnosed in 1985 in a woman in Liguria, while the second, in 1986 in Friuli-Venezia Giulia, documenting the infection in northern Italy. Both diagnoses were confirmed by serological assessment by an indirect immunofluorescence (IFI) technique. Borrelia cultivation from both Ixodes ricinus ticks and human lesions in Trieste (Friuli-Venezia Giulia) identified Borrelia afzelii as the prevalent genospecies; nevertheless, Borrelia garinii, Borrelia burgdorferi (sensu stricto), and Borrelia valaisiana (VS116 Group) were also detected, although less frequently. LB was also documented in other Italian regions: in Tuscany (1991), Trentino–Alto Adige (1995–1996), Emilia-Romagna (1998), Abruzzo (1998), and more recently, Lombardy. Nevertheless, data on LB in other Italian regions, especially in southern Italy and islands, are poor. The aim of this study is to document the spread of LB in Italy through the collection of data from LB patients in eight Italian hospitals located in different Italian regions. Diagnostic criteria for LB diagnosis are as follows: i) the presence of erythema migrans (EM) or ii) a clinical picture suggestive of LB, confirmed by serological tests and/or PCR positivity for Borrelia detection. In addition, data also included the place of residence (town and region) and the place where patients became infected. During the observation period, 1,260 cases were gathered from the participating centers. Although different in extent from northern Italy to central/southern Italy, this study shows that LB is widespread throughout Italy
SNi from SN2: a front-face mechanism ‘synthase’ engineered from a retaining hydrolase
SNi or SNi-like mechanisms, in which leaving group departure and nucleophile approach occur on the same ‘front’ face, have been observed previously experimentally and computationally in both the chemical and enzymatic (glycosyltransferase) substitution reactions of α-glycosyl electrophiles. Given the availability of often energetically comparable competing pathways for substitution (SNi vs SN1 vs SN2) the precise modulation of this archetypal reaction type should be feasible. Here, we show that the drastic engineering of a protein that catalyzes substitution, a retaining β-glycosidase (from Sulfolobus solfataricus SSβG), apparently changes the mode of reaction from “SN2” to “SNi”. Destruction of the nucleophilic Glu387 of SSβG-WT through Glu387Tyr mutation (E387Y) created a catalyst (SSβG-E387Y) with lowered but clear transglycosylation substitution activity with activated substrates, altered substrate and reaction preferences and hence useful synthetic (‘synthase’) utility by virtue of its low hydrolytic activity with unactivated substrates. Strikingly, the catalyst still displayed retaining β stereoselectivity, despite lacking a suitable nucleophile; pH-activity profile, mechanism-based inactivators and mutational analyses suggest that SSβG-E387Y operates without either the use of nucleophile or general acid/base residues, consistent with a SNi or SNi-like mechanism. An x-ray structure of SSβG-E387Y and subsequent metadynamics simulation suggest recruitment of substrates aided by a π-sugar interaction with the introduced Tyr387 and reveal a QM/MM free energy landscape for the substitution reaction catalyzed by this unnatural enzyme similar to those of known natural, SNi-like glycosyltransferase (GT) enzymes. Proton flight from the putative hydroxyl nucleophile to the developing p-nitrophenoxide leaving group of the substituted molecule in the reactant complex creates a hydrogen bond that appears to crucially facilitate the mechanism, mimicking the natural mechanism of SNi-GTs. An oxocarbenium ion-pair minimum along the reaction pathway suggests a step-wise SNi-like DN*ANss rather than a concerted SNi DNAN mechanism. This first observation of a front face mechanism in a β-retaining glycosyl transfer enzyme highlights, not only that unusual SNi reaction pathways may be accessed through direct engineering of catalysts with suitable environments, but also suggests that ‘β-SNi’ reactions are also feasible for glycosyl transfer enzymes and the more widespread existence of SNi or SNi-like mechanism in nature
Human milk and mucosal lacto- and galacto-N-biose synthesis by transgalactosylation and their prebiotic potential in Lactobacillus species
Lacto-N-biose (LNB) and galacto-N-biose (GNB) are major building blocks of free oligosaccharides and glycan moieties of glyco-complexes present in human milk and gastrointestinal mucosa. We have previously characterized the phospho-β-galactosidase GnbG from Lactobacillus casei BL23 that is involved in the metabolism of LNB and GNB. GnbG has been used here in transglycosylation reactions, and it showed the production of LNB and GNB with N-acetylglucosamine and N-acetylgalactosamine as acceptors, respectively. The reaction kinetics demonstrated that GnbG can convert 69 ± 4 and 71 ± 1 % of o-nitrophenyl-β-D-galactopyranoside into LNB and GNB, respectively. Those reactions were performed in a semi-preparative scale, and the synthesized disaccharides were purified. The maximum yield obtained for LNB was 10.7 ± 0.2 g/l and for GNB was 10.8 ± 0.3 g/l. NMR spectroscopy confirmed the molecular structures of both carbohydrates and the absence of reaction byproducts, which also supports that GnbG is specific for β1,3-glycosidic linkages. The purified sugars were subsequently tested for their potential prebiotic properties using Lactobacillus species. The results showed that LNB and GNB were fermented by the tested strains of L. casei, Lactobacillus rhamnosus (except L. rhamnosus strain ATCC 53103), Lactobacillus zeae, Lactobacillus gasseri, and Lactobacillus johnsonii. DNA hybridization experiments suggested that the metabolism of those disaccharides in 9 out of 10 L. casei strains, all L. rhamnosus strains and all L. zeae strains tested relies upon a phospho-β-galactosidase homologous to GnbG. The results presented here support the putative role of human milk oligosaccharides for selective enrichment of beneficial intestinal microbiota in breast-fed infants
Danni cutanei da airbag
none3---noneM. Corazza; S. Trincone; A. VirgiliCorazza, Monica; S., Trincone; Virgili, Ann
Effects of airbag deployment - Lesions, epidemiology, and management
Injuries caused by airbag deployment are described. The epidemiology of various lesions caused by air bag is reporte
Air bags and the skin.
Air bags, fitted in the majority of new automobiles, are safety devices activated when a sudden deceleration causes the ignition of a propellant cartridge containing sodium azide. The bag is inflated by nitrogen liberated during the combustion. Deployment releases various high-temperature gases, including nitrogen and carbon dioxide, and produces sodium hydroxide, a highly irritant alkaline substance. In about 7%-8% of cases, air bags cause dermatologic injuries such as traumatic lesions, irritant dermatitis, and chemical and thermal burns. Nondermatologic lesions, such as ocular damage (alkali keratitis, corneal abrasions), ear lesions, bone fractures, and contusive damage can also be caused by air bag deployment
Antagonism against Rhizoctonia solani and fungitoxic metabolite production by some Penicillium isolates
A number of Penicillium isolates were recovered in association to Rhizoctonia solani strains pathogenic on tobacco and from soil on plates pre-colonized by the pathogen itself. Their antagonism toward R. solani AG-2-1 was evaluated in dual cultures in vitro. Inhibition of growth was evident to some extent in most pairings, while hyphal interactions referable to mycoparasitic relationships were not observed. However, the occurrence of plasmolysis and/or vacuolisation and the induction of monilioid cells were indicative of the release of bioactive compounds. Therefore, production of fungitoxic metabolites was tested by adding concentrated culture filtrates of each Penicillium isolate to the growth medium of R. solani. Complete and lasting inhibition was incited by culture filtrates of some isolates belonging to P. brevicompactum, P. expansum, and P. pinophilum. Three purified compounds, respectively mycophenolic acid, patulin and 3-O-methylfunicone, which were extracted from culture filtrates, were able to inhibit R. solani in vitro. Their production was also detected in dual cultures of the same Penicillium strains with R. solani prepared in sterilized soil and when the Penicillium strains were cultured directly on R. solani mycelium harvested from liquid cultures. The possible role of such metabolites in antagonism of the above-mentioned Penicillium species against R. solani is discussed
Pyrobaculum aerophilum sp. nov., a novel nitrate-reducing hyperthermophilic archaeum.
A novel rod-shaped hyperthermophilic archaeum has been isolated from a boiling marine water hole at Maronti Beach, Ischia, Italy. It grew optimally at 100 degrees C and pH 7.0 by aerobic respiration as well as by dissimilatory nitrate reduction, forming dinitrogen as a final product. Organic and inorganic compounds served as substrates during aerobic and anaerobic respiration. Growth was inhibited by elemental sulfur. The cell wall was composed of a surface layer of hexameric protein complexes arranged on a p6 lattice. The core lipids consisted mainly of glycerol diphytanyl glycerol tetraethers with various degrees of cyclization. The G+C content was 52 mol%. The new isolate resembled members of the genera Thermoproteus and Pyrobaculum by its ability to form characteristic terminal spherical bodies ("golf clubs"). On the basis of its 16S rRNA sequence, the new isolate exhibited a close relationship to the genus Pyrobaculum. It is described as a new species, which we name Pyrobaculum aerophilum (type strain: IM2; DSM 7523)
- …