50 research outputs found

    Degradative actions of microbial xylanolytic activities on hemicelluloses from rhizome of Arundo donax

    Get PDF
    Polysaccharidases from extremophiles are remarkable for specific action, resistance to different reaction conditions and other biotechnologically interesting features. In this article the action of crude extracts of thermophilic microorganisms (Thermotoga neapolitana, Geobacillus thermantarcticus and Thermoanaerobacterium thermostercoris) is studied using as substrate hemicellulose from one of the most interesting biomass crops, the giant reed (Arundo donax L.). This biomass can be cultivated without competition and a huge amount of rhizomes remains in the soil at the end of cropping cycle (10–15 years) representing a further source of useful molecules. Optimization of the procedure for preparation of the hemicellulose fraction from rhizomes of Arundo donax, is studied. Polysaccharidases from crude extracts of thermophilic microorganisms revealed to be suitable for total degradative action and/or production of small useful oligosaccharides from hemicelluloses from A. donax. Xylobiose and interesting tetra- and pentasaccharide are obtained by enzymatic action in different conditions. Convenient amount of raw material was processed per mg of crude enzymes. Raw hemicelluloses and pretreated material show antioxidant activity unlike isolated tetra- and pentasaccharide. The body of results suggest that rhizomes represent a useful raw material for the production of valuable industrial products, thus allowing to increase the economic efficiency of A. donax cultivation

    Marine Biocatalysts: Enzymatic Features and Applications

    Get PDF
    In several recent reports related to biocatalysis the enormous pool of biodiversity found in marine ecosystems is considered a profitable natural reservoir for acquiring an inventory of useful biocatalysts. These enzymes are characterized by well-known habitat-related features such as salt tolerance, hyperthermostability, barophilicity and cold adaptivity. In addition, their novel chemical and stereochemical characteristics increase the interest of biocatalysis practitioners both in academia and research industry. In this review, starting from the analysis of these featuring habitat-related properties, important examples of marine enzymes in biocatalysis will be reported. Completion of this report is devoted to the analysis of novel chemical and stereochemical biodiversity offered by marine biocatalysts with particular emphasis on current or potential applications of these enzymes in chemical and pharmaceutical fields. The analysis of literature cited here and the many published patent applications concerning the use of marine enzymes supports the view that these biocatalysts are just waiting to be discovered, reflecting the importance of the marine environment. The potential of this habitat should be thoroughly explored and possibly the way to access useful biocatalysts should avoid destructive large-scale collections of marine biomass for enzyme production. These two aspects are day by day increasing in interest and a future increase in the use of marine enzymes in biocatalysis should be expected

    Uncommon Glycosidases for the Enzymatic Preparation of Glycosides

    No full text
    Most of the reports in literature dedicated to the use of glycosyl hydrolases for the preparation of glycosides are about gluco- (α- and β-form) and galacto-sidase (β-form), reflecting the high-availability of both anomers of glucosides and of β-galactosides and their wide-ranging applications. Hence, the idea of this review was to analyze the literature focusing on hardly-mentioned natural and engineered glycosyl hydrolases. Their performances in the synthetic mode and natural hydrolytic potential are examined. Both the choice of articles and their discussion are from a biomolecular and a biotechnological perspective of the biocatalytic process, shedding light on new applicative ideas and on the assortment of biomolecular diversity. The hope is to elicit new interest for the development of biocatalysis and to gather attention of biocatalyst practitioners for glycosynthesis

    Update on Marine Carbohydrate Hydrolyzing Enzymes: Biotechnological Applications

    No full text
    After generating much interest in the past as an aid in solving structural problems for complex molecules such as polysaccharides, carbohydrate-hydrolyzing enzymes of marine origin still appear as interesting biocatalysts for a range of useful applications in strong interdisciplinary fields such as green chemistry and similar domains. The multifaceted fields in which these enzymes are of interest and the scarce number of original articles in literature prompted us to provide the specialized analysis here reported. General considerations from modern (2016–2017 interval time) review articles are at start of this manuscript; then it is subsequently organized in sections according to particular biopolymers and original research articles are discussed. Literature sources like the Science Direct database with an optimized W/in search, and the Espacenet patent database were used

    Application-Oriented Marine Isomerases in Biocatalysis

    No full text
    The class EC 5.xx, a group of enzymes that interconvert optical, geometric, or positional isomers are interesting biocatalysts for the synthesis of pharmaceuticals and pharmaceutical intermediates. This class, named “isomerases,” can transform cheap biomolecules into expensive isomers with suitable stereochemistry useful in synthetic medicinal chemistry, and interesting cases of production of l-ribose, d-psicose, lactulose, and d-phenylalanine are known. However, in two published reports about potential biocatalysts of marine origin, isomerases are hardly mentioned. Therefore, it is of interest to deepen the knowledge of these biocatalysts from the marine environment with this specialized in-depth analysis conducted using a literature search without time limit constraints. In this review, the focus is dedicated mainly to example applications in biocatalysis that are not numerous confirming the general view previously reported. However, from this overall literature analysis, curiosity-driven scientific interest for marine isomerases seems to have been long-standing. However, the major fields in which application examples are framed are placed at the cutting edge of current biotechnological development. Since these enzymes can offer properties of industrial interest, this will act as a promoter for future studies of marine-originating isomerases in applied biocatalysis

    Enzymatic Processes in Marine Biotechnology

    No full text
    In previous review articles the attention of the biocatalytically oriented scientific community towards the marine environment as a source of biocatalysts focused on the habitat-related properties of marine enzymes. Updates have already appeared in the literature, including marine examples of oxidoreductases, hydrolases, transferases, isomerases, ligases, and lyases ready for food and pharmaceutical applications. Here a new approach for searching the literature and presenting a more refined analysis is adopted with respect to previous surveys, centering the attention on the enzymatic process rather than on a single novel activity. Fields of applications are easily individuated: (i) the biorefinery value-chain, where the provision of biomass is one of the most important aspects, with aquaculture as the prominent sector; (ii) the food industry, where the interest in the marine domain is similarly developed to deal with the enzymatic procedures adopted in food manipulation; (iii) the selective and easy extraction/modification of structurally complex marine molecules, where enzymatic treatments are a recognized tool to improve efficiency and selectivity; and (iv) marine biomarkers and derived applications (bioremediation) in pollution monitoring are also included in that these studies could be of high significance for the appreciation of marine bioprocesses

    Angling for Uniqueness in Enzymatic Preparation of Glycosides

    No full text
    In the early days of biocatalysis, limitations of an enzyme modeled the enzymatic applications; nowadays the enzyme can be engineered to be suitable for the process requirements. This is a general bird’s-eye view and as such cannot be specific for articulated situations found in different classes of enzymes or for selected enzymatic processes. As far as the enzymatic preparation of glycosides is concerned, recent scientific literature is awash with examples of uniqueness related to the features of the biocatalyst (yield, substrate specificity, regioselectivity, and resistance to a particular reaction condition). The invention of glycosynthases is just one of the aspects that has thrust forward the research in this field. Protein engineering, metagenomics and reaction engineering have led to the discovery of an expanding number of novel enzymes and to the setting up of new bio-based processes for the preparation of glycosides. In this review, new examples from the last decade are compiled with attention both to cases in which naturally present, as well as genetically inserted, characteristics of the catalysts make them attractive for biocatalysis

    Bioactive Compounds Produced by Strains of Penicillium and Talaromyces of Marine Origin

    No full text
    In recent years, the search for novel natural compounds with bioactive properties has received a remarkable boost in view of their possible pharmaceutical exploitation. In this respect the sea is entitled to hold a prominent place, considering the potential of the manifold animals and plants interacting in this ecological context, which becomes even greater when their associated microbes are considered for bioprospecting. This is the case particularly of fungi, which have only recently started to be considered for their fundamental contribution to the biosynthetic potential of other more valued marine organisms. Also in this regard, strains of species which were previously considered typical terrestrial fungi, such as Penicillium and Talaromyces, disclose foreground relevance. This paper offers an overview of data published over the past 25 years concerning the production and biological activities of secondary metabolites of marine strains belonging to these genera, and their relevance as prospective drugs
    corecore