701 research outputs found
The Difficulties of Learning Logic Programs with Cut
As real logic programmers normally use cut (!), an effective learning
procedure for logic programs should be able to deal with it. Because the cut
predicate has only a procedural meaning, clauses containing cut cannot be
learned using an extensional evaluation method, as is done in most learning
systems. On the other hand, searching a space of possible programs (instead of
a space of independent clauses) is unfeasible. An alternative solution is to
generate first a candidate base program which covers the positive examples, and
then make it consistent by inserting cut where appropriate. The problem of
learning programs with cut has not been investigated before and this seems to
be a natural and reasonable approach. We generalize this scheme and investigate
the difficulties that arise. Some of the major shortcomings are actually
caused, in general, by the need for intensional evaluation. As a conclusion,
the analysis of this paper suggests, on precise and technical grounds, that
learning cut is difficult, and current induction techniques should probably be
restricted to purely declarative logic languages.Comment: See http://www.jair.org/ for any accompanying file
Channel Secondary Random Process for Robust Secret Key Generation
The broadcast nature of wireless communications imposes the risk of information leakage to adversarial users or unauthorized receivers. Therefore, information security between intended users remains a challenging issue. Most of the current physical layer security techniques exploit channel randomness as a common source between two legitimate nodes to extract a secret key. In this paper, we propose a new simple technique to generate the secret key. Specifically, we exploit the estimated channel to generate a secondary random process (SRP) that is common between the two legitimate nodes. We compare the estimated channel gain and phase to a preset threshold. The moving differences between the locations at which the estimated channel gain and phase exceed the threshold are the realization of our SRP. We simulate an orthogonal frequency division multiplexing (OFDM) system and show that our proposed technique provides a drastic improvement in the key bit mismatch rate (BMR) between the legitimate nodes when compared to the techniques that exploit the estimated channel gain or phase directly. In addition to that, the secret key generated through our technique is longer than that generated by conventional techniques
Local Catalytic Ignition during CO Oxidation on Low-Index Pt and Pd Surfaces: A Combined PEEM, MS, and DFT Study
Shedding light on light-off: Photoemission electron microscopy, DFT, and microkinetic modeling were used to examine the local kinetics in the CO oxidation on individual grains of a polycrystalline sample. It is demonstrated that catalytic ignition (“light-off”) occurs easier on Pd(hkl) domains than on corresponding Pt(hkl) domains. The isothermal determination of kinetic transitions, commonly used in surface science, is fully consistent with the isobaric reactivity monitoring applied in technical catalysis
From modular invariants to graphs: the modular splitting method
We start with a given modular invariant M of a two dimensional su(n)_k
conformal field theory (CFT) and present a general method for solving the
Ocneanu modular splitting equation and then determine, in a step-by-step
explicit construction, 1) the generalized partition functions corresponding to
the introduction of boundary conditions and defect lines; 2) the quantum
symmetries of the higher ADE graph G associated to the initial modular
invariant M. Notice that one does not suppose here that the graph G is already
known, since it appears as a by-product of the calculations. We analyze several
su(3)_k exceptional cases at levels 5 and 9.Comment: 28 pages, 7 figures. Version 2: updated references. Typos corrected.
su(2) example has been removed to shorten the paper. Dual annular matrices
for the rejected exceptional su(3) diagram are determine
Probabilistic risk analysis of groundwater remediation strategies
Heterogeneity of subsurface environments and insufficient site characterization are some of the reasons why decisions about groundwater exploitation and remediation have to be made under uncertainty. A typical decision maker chooses between several alternative remediation strategies by balancing their respective costs with the probability of their success or failure. We conduct a probabilistic risk assessment (PRA) to determine the likelihood of the success of a permeable reactive barrier, one of the leading approaches to groundwater remediation. While PRA is used extensively in many engineering fields, its applications in hydrogeology are scarce. This is because rigorous PRA requires one to quantify structural and parametric uncertainties inherent in predictions of subsurface flow and transport. We demonstrate how PRA can facilitate a comprehensive uncertainty quantification for complex subsurface phenomena by identifying key transport processes contributing to a barrier's failure, each of which is amenable to uncertainty analysis. Probability of failure of a remediation strategy is computed by combining independent and conditional probabilities of failure of each process. Individual probabilities can be evaluated either analytically or numerically or, barring both, can be inferred from expert opinio
The beta function and equation of state for QCD with two flavors of quarks
We measure the pressure and energy density of two flavor QCD in a wide range
of quark masses and temperatures. The pressure is obtained from an integral
over the average plaquette or psi-bar-psi. We measure the QCD beta function,
including the anomalous dimension of the quark mass, in new Monte Carlo
simulations and from results in the literature. We use it to find the
interaction measure, E-3p, yielding non-perturbative values for both the energy
density E and the pressure p. uuencoded compressed PostScript file Revised
version should work on more PostScript printers.Comment: 24 page
Colchicine for pericarditis: Hype or hope?
Colchicine has been effectively used in the treatment of several inflammatory conditions, such as gouty attacks, serositis related to familial Mediterranean fever, Behcet syndrome, and more recently also in acute and recurrent pericarditis. Growing evidence has shown that the drug may be useful to treat an acute attack and may be a way to cope with the prevention of pericarditis in acute and recurrent cases and after cardiac surgery. Nevertheless, clinicians are often sceptical about the efficacy of the drug, and concerns have risen on possible side effects and tolerability. In this review, we analyse current evidence to support the use of the drug, as well as possible harms and risks related to drug interactions, reaching the conclusion that colchicine is safe and useful in recurrent pericarditis, if specific precautions are followed, although less evidence supports its use for the treatment of acute pericarditis, where colchicine remains optional and there is a need for further multicentre confirmatory studies. This paper also reviews specific dosing and precautions for the clinical use
Performance of glass RPC with industrial silk-screen-printed electrodes
In this paper we describe the performance of several Glass RPCs, where the water-based graphite coating is replaced by a synthetic coating applied using the screen printing technique. As expected, the performance of the detectors is good and reproducible due to the accurate control of the coating resistivity value. The resistance of the coating to the action of mechanical and chemical agents permits an easy electrode cleaning and mounting with respect to the RPC coated with the graphite varnish. This coating, together with the use of float glass as electrode material, allows an industrial production, where the detector characteristics can be tailored as a function of the experiment requirements
- …