78 research outputs found

    New morphological information on, and species of placoderm fish Africanaspis (Arthrodira, Placodermi) from the Late Devonian of South Africa

    Get PDF
    Here we present a new species of placoderm fish, Africanaspis edmountaini sp. nov., and redescribe Africanaspis doryssa on the basis of new material collected from the type locality of Africanaspis. The new material includes the first head shields of Africanaspis doryssa in addition to soft anatomy for both taxa. Hitherto Africanaspis was entirely described from trunk armour and no record of body and fin outlines had been recorded. In addition the first record of embryonic and juvenile specimens of Africanaspis doryssa is presented and provides a growth series from presumed hatchlings to presumed adults. The presence of a greater number of juveniles compared to adults indicates that the Waterloo Farm fossil site in South Africa represents the first nursery site of arthrodire placoderms known from a cold water environment. The preservation of an ontogenetic series demonstrates that variation within the earlier known sample, initially considered to have resulted from ontogenetic change, instead indicates the presence of a second, less common species Africanaspis edmountaini sp. nov. There is some faunal overlap between the Waterloo Farm fossil site and faunas described from Strud in Belgium and Red Hill, Pennsylvania, in north America, supporting the concept of a more cosmopolitan vertebrate fauna in the Famennian than earlier in the Devonian

    First shark from the late Devonian (Frasnian) gogo formation, Western Australia sheds new light on the development of tessellated calcified cartilage

    Get PDF
    Background: Living gnathostomes (jawed vertebrates) comprise two divisions, Chondrichthyes (cartilaginous fishes, including euchondrichthyans with prismatic calcified cartilage, and extinct stem chondrichthyans) and Osteichthyes (bony fishes including tetrapods). Most of the early chondrichthyan (‘shark’) record is based upon isolated teeth, spines, and scales, with the oldest articulated sharks that exhibit major diagnostic characters of the group—prismatic calcified cartilage and pelvic claspers in males—being from the latest Devonian, c. 360 Mya. This paucity of information about early chondrichthyan anatomy is mainly due to their lack of endoskeletal bone and consequent low preservation potential. Methodology/Principal Findings: Here we present new data from the first well-preserved chondrichthyan fossil from the early Late Devonian (ca. 380–384 Mya) Gogo Formation Lägerstatte of Western Australia. The specimen is the first Devonian shark body fossil to be acid-prepared, revealing the endoskeletal elements as three-dimensional undistorted units: Meckel’s cartilages, nasal, ceratohyal, basibranchial and possible epibranchial cartilages, plus left and right scapulocoracoids, as well as teeth and scales. This unique specimen is assigned to Gogoselachus lynnbeazleyae n. gen. n. sp.Conclusions/Significance: The Meckel’s cartilages show a jaw articulation surface dominated by an expansive cotylus, and a small mandibular knob, an unusual condition for chondrichthyans. The scapulocoracoid of the new specimen shows evidence of two pectoral fin basal articulation facets, differing from the standard condition for early gnathostomes which have either one or three articulations. The tooth structure is intermediate between the ‘primitive’ ctenacanthiform and symmoriiform condition, and more derived forms with a euselachian-type base. Of special interest is the highly distinctive type of calcified cartilage forming the endoskeleton, comprising multiple layers of nonprismatic subpolygonal tesserae separated by a cellular matrix, interpreted as a transitional step toward the tessellated prismatic calcified cartilage that is recognized as the main diagnostic character of the chondrichthyans

    QSAR studies on a number of pyrrolidin-2-one antiarrhythmic arylpiperazinyls

    Get PDF
    The activity of a number of 1-[3-(4-arylpiperazin-1-yl)propyl]pyrrolidin-2-one antiarrhythmic (AA) agents was described using the quantitative structure–activity relationship model by applying it to 33 compounds. The molecular descriptors of the AA activity were obtained by quantum chemical calculations combined with molecular modeling calculations. The resulting model explains up to 91% of the variance and it was successfully validated by four tests (LOO, LMO, external test, and Y-scrambling test). Statistical analysis shows that the AA activity of the studied compounds depends mainly on the PCR and JGI4 descriptors

    The Chemical Information Ontology: Provenance and Disambiguation for Chemical Data on the Biological Semantic Web

    Get PDF
    Cheminformatics is the application of informatics techniques to solve chemical problems in silico. There are many areas in biology where cheminformatics plays an important role in computational research, including metabolism, proteomics, and systems biology. One critical aspect in the application of cheminformatics in these fields is the accurate exchange of data, which is increasingly accomplished through the use of ontologies. Ontologies are formal representations of objects and their properties using a logic-based ontology language. Many such ontologies are currently being developed to represent objects across all the domains of science. Ontologies enable the definition, classification, and support for querying objects in a particular domain, enabling intelligent computer applications to be built which support the work of scientists both within the domain of interest and across interrelated neighbouring domains. Modern chemical research relies on computational techniques to filter and organise data to maximise research productivity. The objects which are manipulated in these algorithms and procedures, as well as the algorithms and procedures themselves, enjoy a kind of virtual life within computers. We will call these information entities. Here, we describe our work in developing an ontology of chemical information entities, with a primary focus on data-driven research and the integration of calculated properties (descriptors) of chemical entities within a semantic web context. Our ontology distinguishes algorithmic, or procedural information from declarative, or factual information, and renders of particular importance the annotation of provenance to calculated data. The Chemical Information Ontology is being developed as an open collaborative project. More details, together with a downloadable OWL file, are available at http://code.google.com/p/semanticchemistry/ (license: CC-BY-SA)

    Development of the Synarcual in the Elephant Sharks (Holocephali; Chondrichthyes): Implications for Vertebral Formation and Fusion

    Get PDF
    The synarcual is a structure incorporating multiple elements of two or more anterior vertebrae of the axial skeleton, forming immediately posterior to the cranium. It has been convergently acquired in the fossil group ‘Placodermi’, in Chondrichthyes (Holocephali, Batoidea), within the teleost group Syngnathiformes, and to varying degrees in a range of mammalian taxa. In addition, cervical vertebral fusion presents as an abnormal pathology in a variety of human disorders. Vertebrae develop from axially arranged somites, so that fusion could result from a failure of somite segmentation early in development, or from later heterotopic development of intervertebral bone or cartilage. Examination of early developmental stages indicates that in the Batoidea and the ‘Placodermi’, individual vertebrae developed normally and only later become incorporated into the synarcual, implying regular somite segmenta- tion and vertebral development. Here we show that in the holocephalan Callorhinchus milii, uniform and regular vertebral segmentation also occurs, with anterior individual vertebra developing separately with subsequent fusion into a synarcual. Vertebral elements forming directly behind the synarcual continue to be incorporated into the synarcual through growth. This appears to be a common pattern through the Vertebrata. Research into human disor- ders, presenting as cervical fusion at birth, focuses on gene misexpression studies in humans and other mammals such as the mouse. However, in chondrichthyans, vertebral fusion represents the normal morphology, moreover, taxa such Leucoraja (Batoidea) and Callorhinchus (Holocephali) are increasingly used as laboratory animals, and the Callor- hinchus genome has been sequenced and is available for study. Our observations on synarcual development in three major groups of early jawed vertebrates indicate that fusion involves heterotopic cartilage and perichondral bone/mineralised cartilage developing outside the regular skeleton. We suggest that chondrichthyans have potential as ideal extant models for identifying the genes involved in these processes, for application to human skeletal heterotopic disorders

    Early Gnathostome Phylogeny Revisited: Multiple Method Consensus

    Get PDF
    This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.A series of recent studies recovered consistent phylogenetic scenarios of jawed vertebrates, such as the paraphyly of placoderms with respect to crown gnathostomes, and antiarchs as the sister group of all other jawed vertebrates. However, some of the hylogenetic relationships within the group have remained controversial, such as the positions of Entelognathus, ptyctodontids, and the Guiyu-lineage that comprises Guiyu, Psarolepis and Achoania. The revision of the dataset in a recent study reveals a modified phylogenetic hypothesis, which shows that some of these phylogenetic conflicts were sourced from a few inadvertent miscodings. The interrelationships of early gnathostomes are addressed based on a combined new dataset with 103 taxa and 335 characters, which is the most comprehensive morphological dataset constructed to date. This dataset is investigated in a phylogenetic context using maximum parsimony (MP), Bayesian inference (BI) and maximum likelihood (ML) approaches in an attempt to explore the consensus and incongruence between the hypotheses of early gnathostome interrelationships recovered from different methods. Our findings consistently corroborate the paraphyly of placoderms, all `acanthodians' as a paraphyletic stem group of chondrichthyans, Entelognathus as a stem gnathostome, and the Guiyu-lineage as stem sarcopterygians. The incongruence using different methods is less significant than the consensus, and mainly relates to the positions of the placoderm Wuttagoonaspis, the stem chondrichthyan Ramirosuarezia, and the stem osteichthyan LophosteusÐthe taxa that are either poorly known or highly specialized in character complement. Given that the different performances of each phylogenetic approach, our study provides an empirical case that the multiple phylogenetic analyses of morphological data are mutually complementary rather than redundant

    A new genus of ptyctodont (Placodermi) from the late Devonian of Baltic area

    No full text
    © Texas A and M University. All rights reserved. The ptyctodont fish first referred to as Chelyophorus pskovensis Obruchev, 1947 from the Early Frasnian (Late Devonian) of Velikaya River, Pskov Region, Russia, is redescribed following the collection of additional materials from the contemporaneous Meeksi Mill outcrop, Estonia; Piskovichi and Snetnaya Gora outcrops, Russia and is here referred to Meeksiella gen. nov. With the exception of an articulated skull roof, the fossils occur as three dimensionally preserved isolated plates, and this has allowed accurate reconstruction of the dermal skeleton. A phylogenetic analysis resolves Meeksiella pskovensis gen. et sp. nov. within a previously recovered cluster of taxa which includes Ctenurella from Europe and Austroptyctodus from Western Australia, demonstrating global distribution of this clade during the Late Devonian

    Eons of fishy fossils

    No full text
    An overview of the long evolutionary history of fishes and diversity of Australian fossil fish faunas. Conodont relationships and use in dating are discussed, together with features of newly described osteichthyan braincase. Biogeography and biocorrelation of microvertebrate remains are considered. Development of Mesozoic teleosts are briefly outlined and longevity of select groups is demonstrated.27 page(s

    A new genus of ptyctodont (Placodermi) from the late Devonian of Baltic area

    No full text
    © Texas A and M University. All rights reserved. The ptyctodont fish first referred to as Chelyophorus pskovensis Obruchev, 1947 from the Early Frasnian (Late Devonian) of Velikaya River, Pskov Region, Russia, is redescribed following the collection of additional materials from the contemporaneous Meeksi Mill outcrop, Estonia; Piskovichi and Snetnaya Gora outcrops, Russia and is here referred to Meeksiella gen. nov. With the exception of an articulated skull roof, the fossils occur as three dimensionally preserved isolated plates, and this has allowed accurate reconstruction of the dermal skeleton. A phylogenetic analysis resolves Meeksiella pskovensis gen. et sp. nov. within a previously recovered cluster of taxa which includes Ctenurella from Europe and Austroptyctodus from Western Australia, demonstrating global distribution of this clade during the Late Devonian

    On Randic's molecular identification numbers

    No full text
    corecore