14 research outputs found

    In-vivo range verification analysis with in-beam PET data for patients treated with proton therapy at CNAO

    Get PDF
    Morphological changes that may arise through a treatment course are probably one of the most significant sources of range uncertainty in proton therapy. Non-invasive in-vivo treatment monitoring is useful to increase treatment quality. The INSIDE in-beam Positron Emission Tomography (PET) scanner performs in-vivo range monitoring in proton and carbon therapy treatments at the National Center of Oncological Hadrontherapy (CNAO). It is currently in a clinical trial (ID: NCT03662373) and has acquired in-beam PET data during the treatment of various patients. In this work we analyze the in-beam PET (IB-PET) data of eight patients treated with proton therapy at CNAO. The goal of the analysis is twofold. First, we assess the level of experimental fluctuations in inter-fractional range differences (sensitivity) of the INSIDE PET system by studying patients without morphological changes. Second, we use the obtained results to see whether we can observe anomalously large range variations in patients where morphological changes have occurred. The sensitivity of the INSIDE IB-PET scanner was quantified as the standard deviation of the range difference distributions observed for six patients that did not show morphological changes. Inter-fractional range variations with respect to a reference distribution were estimated using the Most-Likely-Shift (MLS) method. To establish the efficacy of this method, we made a comparison with the Beam's Eye View (BEV) method. For patients showing no morphological changes in the control CT the average range variation standard deviation was found to be 2.5 mm with the MLS method and 2.3 mm with the BEV method. On the other hand, for patients where some small anatomical changes occurred, we found larger standard deviation values. In these patients we evaluated where anomalous range differences were found and compared them with the CT. We found that the identified regions were mostly in agreement with the morphological changes seen in the CT scan

    The whole earth blazar telescope campaign on the intermediate BL Lac object 3C 66A in 2007-2008

    Get PDF
    Prompted by a high optical state in 2007 September, the Whole Earth Blazar Telescope consortium organized an intensive optical, near-IR (JHK) and radio observing campaign on the intermediate BL Lac object 3C 66A throughout the fall and winter of 2007-2008. In this paper, we present data from 28 observatories in 12 countries, covering the observing season from late 2007 July through 2008 February. The source remained in a high optical state throughout the observing period and exhibited several bright flares on timescales of 10 days. This included an exceptional outburst around 2007 September 15-20, reaching a peak brightness at R 13.4. Our campaign revealed microvariability with flux changes up to |dR/dt| 0.02 mag hr-1. Our observations do not reveal evidence for systematic spectral variability in the overall high state covered by our campaign, in agreement with previous results. In particular, we do not find evidence for spectral hysteresis in 3C 66A for which hints were found in an earlier campaign in a somewhat lower flux state. We also did not find any evidence for spectral lags in the discrete correlation functions between different optical bands. We infer a value of the magnetic field in the emission region of B 19 e 2/7B τ-6/7h D 13/71 G, where eB is the magnetic field equipartition fraction, τh is the shortest observed variability timescale in units of hours, and D 1 is the Doppler factor in units of 10. From the lack of systematic spectral variability, we can derive an upper limit on the Doppler factor, D ≤ 28 τ-1/8h e 3/16B. This is in perfect agreement with superluminal motion measurements with the VLBI/VLBA of βapp ≤ 27 and argues against models with very high Lorentz factors of Γ ≳ 50, required for a one-zone synchrotron-self-Compton interpretation of some high-frequency-peaked BL Lac objects detected at TeV γ-ray energies. © 2009 The American Astronomical Society

    The high activity of 3C 454.3 in autumn 2007: Monitoring by the WEBT during the AGILE detection

    Get PDF
    The quasar-type blazar 3C 454.3 underwent a phase of high activity in summer and autumn 2007, which was intensively monitored in the radio-to-optical bands by the Whole Earth Blazar Telescope (WEBT). The gamma-ray satellite AGILE detected this source first in late July, and then in November-December 2007. In this letter we present the multifrequency data collected by the WEBT and collaborators during the second AGILE observing period, complemented by a few contemporaneous data from UVOT onboard the Swift satellite. The aim is to trace in detail the behaviour of the synchrotron emission from the blazar jet, and to investigate the contribution from the thermal emission component. Optical data from about twenty telescopes have been homogeneously calibrated and carefully assembled to construct an R-band light curve containing about 1340 data points in 42 days. This extremely well-sampled optical light curve allows us to follow the dramatic flux variability of the source in detail. In addition, we show radio-to-UV spectral energy distributions (SEDs) at different epochs, which represent different brightness levels. In the considered period, the source varied by 2.6 mag in a couple of weeks in the R band. Many episodes of fast (i.e. intranight) variability were observed, most notably on December 12, when a flux increase of about 1.1 mag in 1.5 hours was detected, followed by a steep decrease of about 1.2 mag in 1 hour. The contribution by the thermal component is difficult to assess, due to the uncertainties in the Galactic, and possibly also intrinsic, extinction in the UV band. However, polynomial fitting of radio-to-UV SEDs reveals an increasing spectral bending going towards fainter states, suggesting a UV excess likely due to the thermal emission from the accretion disc

    The WEBT campaign on the blazar 3C 279 in 2006

    Get PDF
    The quasar 3C279 was the target of an extensive multiwavelength monitoring campaign from January through April 2006, including an optical-IR-radio monitoring campaign by the Whole Earth Blazar Telescope (WEBT) collaboration. In this paper we focus on the results of the WEBT campaign. The source exhibited substantial variability of optical flux and spectral shape, with a characteristic time scale of a few days. The variability patterns throughout the optical BVRI bands were very closely correlated with each other. In intriguing contrast to other (in particular, BL Lac type) blazars, we find a lag of shorter- behind longer-wavelength variability throughout the RVB ranges, with a time delay increasing with increasing frequency. Spectral hardening during flares appears delayed with respect to a rising optical flux. This, in combination with the very steep IR-optical continuum spectral index of ~ 1.5 - 2.0, may indicate a highly oblique magnetic field configuration near the base of the jet. An alternative explanation through a slow (time scale of several days) acceleration mechanism would require an unusually low magnetic field of < 0.2 G, about an order of magnitude lower than inferred from previous analyses of simultaneous SEDs of 3C279 and other FSRQs with similar properties

    GPU-accelerated Monte Carlo simulation of electron and photon interactions for radiotherapy applications

    No full text
    The Monte Carlo simulation software is a valuable tool in radiation therapy, in particular to achieve the needed accuracy in the dose evaluation for the treatment plans optimisation. The current challenge in this field is the time reduction to open the way to many clinical applications for which the computational time is an issue. In this manuscript we present an innovative GPU-accelerated Monte Carlo software for dose valuation in electron and photon based radiotherapy, developed as an update of the FRED (Fast paRticle thErapy Dose evaluator) software

    Deep seated tumour treatments with electrons of high energy delivered at FLASH rates: the example of prostate cancer

    No full text
    Different therapies are adopted for the treatment of deep seated tumours in combination or as an alternative to surgical removal or chemotherapy: radiotherapy with photons (RT), particle therapy (PT) with protons or even heavier ions like 12C, are now available in clinical centres. In addition to these irradiation modalities, the use of Very High Energy Electron (VHEE) beams (100–200 MeV) has been suggested in the past, but the diffusion of that technique was delayed due to the needed space and budget, with respect to standard photon devices. These disadvantages were not paired by an increased therapeutic efficacy, at least when comparing to proton or carbon ion beams. In this contribution we investigate how recent developments in electron beam therapy could reshape the treatments of deep seated tumours. In this respect we carefully explored the application of VHEE beams to the prostate cancer, a well-known and studied example of deep seated tumour currently treated with high efficacy both using RT and PT. The VHEE Treatment Planning System was obtained by means of an accurate Monte Carlo (MC) simulation of the electrons interactions with the patient body. A simple model of the FLASH effect (healthy tissues sparing at ultra-high dose rates), has been introduced and the results have been compared with conventional RT. The study demonstrates that VHEE beams, even in absence of a significant FLASH effect and with a reduced energy range (70–130 MeV) with respect to implementations already explored in literature, could be a good alternative to standard RT, even in the framework of technological developments that are nowadays affordable

    The Herschel-SPIRE Legacy Survey (HSLS): the scientific goals of a shallow and wide submillimeter imaging survey with SPIRE

    Get PDF
    A large sub-mm survey with Herschel will enable many exciting science opportunities, especially in an era of wide-field optical and radio surveys and high resolution cosmic microwave background experiments. The Herschel-SPIRE Legacy Survey (HSLS), will lead to imaging data over 4000 sq. degrees at 250, 350, and 500 micron. Major Goals of HSLS are: (a) produce a catalog of 2.5 to 3 million galaxies down to 26, 27 and 33 mJy (50% completeness; 5 sigma confusion noise) at 250, 350 and 500 micron, respectively, in the southern hemisphere (3000 sq. degrees) and in an equatorial strip (1000 sq. degrees), areas which have extensive multi-wavelength coverage and are easily accessible from ALMA. Two thirds of the of the sources are expected to be at z > 1, one third at z > 2 and about a 1000 at z > 5. (b) Remove point source confusion in secondary anisotropy studies with Planck and ground-based CMB data. (c) Find at least 1200 strongly lensed bright sub-mm sources leading to a 2% test of general relativity. (d) Identify 200 proto-cluster regions at z of 2 and perform an unbiased study of the environmental dependence of star formation. (e) Perform an unbiased survey for star formation and dust at high Galactic latitude and make a census of debris disks and dust around AGB stars and white dwarfs

    Characterization of 150 μm\mu m thick silicon microstrip prototype for the FOOT experiment

    No full text
    International audienceThe goals of the FOOT (FragmentatiOn Of Target) experiment are to measure the proton double differential fragmentation cross-section on H, C, O targets at beam energies of interest for hadrontherapy (50–250 MeV for protons and 50–400 MeV/u for carbon ions), and also at higher energy, up to 1 GeV/u for radioprotection in space. Given the short range of the fragments, an inverse kinematic approach has been chosen, requiring precise tracking capabilities for charged particles. One of the subsystems designed for the experiment will be the MSD (Microstrip Silicon Detector), consisting of three x-y measurement planes, each one made by two single sided silicon microstrip sensors. In this document, we will present a detailed description of the first MSD prototype assembly, developed by INFN Perugia group and the subsequent characterization of the detector performance. The prototype is a wide area(∼ 100 cm2^{2}) single sensor, 150 μm thick to reduce material budget and fragmentation probability along the beam path, with 50 μm strip pitch and 2 floating strip readout approach. The pitch adapter to connect strips with the readout channels of the ASIC has been implemented directly on the silicon surface. Beside the interest for the FOOT experiment, the results in terms of cluster signal, signal-to-noise ratio, dynamic range of the readout chips, as well as long-term stability studies in terms of noise, are relevant also for other experiments where the use of thin sensors is crucial

    Characterization of 150 μm thick silicon microstrip prototype for the FOOT experiment

    No full text
    International audienceThe goals of the FOOT (FragmentatiOn Of Target) experiment are to measure the proton double differential fragmentation cross-section on H, C, O targets at beam energies of interest for hadrontherapy (50–250 MeV for protons and 50–400 MeV/u for carbon ions), and also at higher energy, up to 1 GeV/u for radioprotection in space. Given the short range of the fragments, an inverse kinematic approach has been chosen, requiring precise tracking capabilities for charged particles. One of the subsystems designed for the experiment will be the MSD (Microstrip Silicon Detector), consisting of three x-y measurement planes, each one made by two single sided silicon microstrip sensors. In this document, we will present a detailed description of the first MSD prototype assembly, developed by INFN Perugia group and the subsequent characterization of the detector performance. The prototype is a wide area(∼ 100 cm2^{2}) single sensor, 150 μm thick to reduce material budget and fragmentation probability along the beam path, with 50 μm strip pitch and 2 floating strip readout approach. The pitch adapter to connect strips with the readout channels of the ASIC has been implemented directly on the silicon surface. Beside the interest for the FOOT experiment, the results in terms of cluster signal, signal-to-noise ratio, dynamic range of the readout chips, as well as long-term stability studies in terms of noise, are relevant also for other experiments where the use of thin sensors is crucial
    corecore