64 research outputs found
Common-path interferometric label-free protein sensing with resonant dielectric nanostructures
Research toward photonic biosensors for point-of-care applications and personalized medicine is driven by the need for high-sensitivity, low-cost, and reliable technology. Among the most sensitive modalities, interferometry offers particularly high performance, but typically lacks the required operational simplicity and robustness. Here, we introduce a common-path interferometric sensor based on guided-mode resonances to combine high performance with inherent stability. The sensor exploits the simultaneous excitation of two orthogonally polarized modes, and detects the relative phase change caused by biomolecular binding on the sensor surface. The wide dynamic range of the sensor, which is essential for fabrication and angle tolerance, as well as versatility, is controlled by integrating multiple, tuned structures in the field of view. This approach circumvents the trade-off between sensitivity and dynamic range, typical of other phase-sensitive modalities, without increasing complexity. Our sensor enables the challenging label-free detection of procalcitonin, a small protein (13 kDa) and biomarker for infection, at the clinically relevant concentration of 1 pg mL−1, with a signal-to-noise ratio of 35. This result indicates the utility for an exemplary application in antibiotic guidance, and opens possibilities for detecting further clinically or environmentally relevant small molecules with an intrinsically simple and robust sensing modality
Age-Related Attenuation of Dominant Hand Superiority
The decline of motor performance of the human hand-arm system with age is well-documented. While dominant hand performance is superior to that of the non-dominant hand in young individuals, little is known of possible age-related changes in hand dominance. We investigated age-related alterations of hand dominance in 20 to 90 year old subjects. All subjects were unambiguously right-handed according to the Edinburgh Handedness Inventory. In Experiment 1, motor performance for aiming, postural tremor, precision of arm-hand movement, speed of arm-hand movement, and wrist-finger speed tasks were tested. In Experiment 2, accelerometer-sensors were used to obtain objective records of hand use in everyday activities
Motor Cortex Representation of the Upper-Limb in Individuals Born without a Hand
The body schema is an action-related representation of the body that arises from activity in a network of multiple brain areas. While it was initially thought that the body schema developed with experience, the existence of phantom limbs in individuals born without a limb (amelics) led to the suggestion that it was innate. The problem with this idea, however, is that the vast majority of amelics do not report the presence of a phantom limb. Transcranial magnetic stimulation (TMS) applied over the primary motor cortex (M1) of traumatic amputees can evoke movement sensations in the phantom, suggesting that traumatic amputation does not delete movement representations of the missing hand. Given this, we asked whether the absence of a phantom limb in the majority of amelics means that the motor cortex does not contain a cortical representation of the missing limb, or whether it is present but has been deactivated by the lack of sensorimotor experience. In four upper-limb amelic subjects we directly stimulated the arm/hand region of M1 to see 1) whether we could evoke phantom sensations, and 2) whether muscle representations in the two cortices were organised asymmetrically. TMS applied over the motor cortex contralateral to the missing limb evoked contractions in stump muscles but did not evoke phantom movement sensations. The location and extent of muscle maps varied between hemispheres but did not reveal any systematic asymmetries. In contrast, forearm muscle thresholds were always higher for the missing limb side. We suggest that phantom movement sensations reported by some upper limb amelics are mostly driven by vision and not by the persistence of motor commands to the missing limb within the sensorimotor cortex. We propose that prewired movement representations of a limb need the experience of movement to be expressed within the primary motor cortex
Prognostic value of cortically induced motor evoked activity by TMS in chronic stroke: caveats from a very revealing single clinical case
Background: We report the case of a chronic stroke patient (62 months after injury) showing total absence of motor activity evoked by transcranial magnetic stimulation (TMS) of spared regions of the left motor cortex, but near-to-complete recovery of motor abilities in the affected hand. Case presentation: Multimodal investigations included detailed TMS based motor mapping, motor evoked potentials (MEP), and Cortical Silent period (CSP) as well as functional magnetic resonance imaging (fMRI) of motor activity, MRI based lesion analysis and Diffusion Tensor Imaging (DTI) Tractography of corticospinal tract (CST). Anatomical analysis revealed a left hemisphere subinsular lesion interrupting the descending left CST at the level of the internal capsule. The absence of MEPs after intense TMS pulses to the ipsilesional M1, and the reversible suppression of ongoing electromyographic (EMG) activity (indexed by CSP) demonstrate a weak modulation of subcortical systems by the ipsilesional left frontal cortex, but an inability to induce efficient descending volleys from those cortical locations to right hand and forearm muscles. Functional MRI recordings under grasping and finger tapping patterns involving the affected hand showed slight signs of subcortical recruitment, as compared to the unaffected hand and hemisphere, as well as the expected cortical activations. Conclusions: The potential sources of motor voluntary activity for the affected hand in absence of MEPs are discussed. We conclude that multimodal analysis may contribute to a more accurate prognosis of stroke patients
Cognitive effects of high-frequency repetitive transcranial magnetic stimulation: a systematic review
Transcranial magnetic stimulation (TMS) was introduced as a non-invasive tool for the investigation of the motor cortex. The repetitive application (rTMS), causing longer lasting effects, was used to study the influence on a variety of cerebral functions. High-frequency (>1 Hz) rTMS is known to depolarize neurons under the stimulating coil and to indirectly affect areas being connected and related to emotion and behavior. Researchers found selective cognitive improvement after high-frequency (HF) stimulation specifically over the left dorsolateral prefrontal cortex (DLPFC). This article provides a systematic review of HF-rTMS studies (1999–2009) stimulating over the prefrontal cortex of patients suffering from psychiatric/neurological diseases or healthy volunteers, where the effects on cognitive functions were measured. The cognitive effect was analyzed with regard to the impact of clinical status (patients/healthy volunteers) and stimulation type (verum/sham). RTMS at 10, 15 or 20 Hz, applied over the left DLPFC, within a range of 10–15 successive sessions and an individual motor threshold of 80–110%, is most likely to cause significant cognitive improvement. In comparison, patients tend to reach a greater improvement than healthy participants. Limitations concern the absence of healthy groups in clinical studies and partly the absence of sham groups. Thus, future investigations are needed to assess cognitive rTMS effects in different psychiatric disorders versus healthy subjects using an extended standardized neuropsychological test battery. Since the pathophysiological and neurobiological basis of cognitive improvement with rTMS remains unclear, additional studies including genetics, experimental neurophysiology and functional brain imaging are necessary to explore stimulation-related functional changes in the brain
Estimulação magnética transcraniana na neuropsicologia: novos horizontes em pesquisa sobre o cérebro
- …