1,417 research outputs found

    Gemini Telepresence Robot System Design: A Low-Cost Solution for Manipulation and Enhanced Perception of Telepresence Robots

    Get PDF
    Current telepresence robots are costly and only allow the operator to see the environment on a 2D screen and move around on a wheelbase. Thus, these telepresence devices are severely limited because of the high barrier of entry, and the operator is unable to manipulate objects or easily perceive the world in 3D. Therefore, to address these gaps in capabilities, Gemini, an open-source telepresence humanoid robot and interface station, was designed to grant the operator the ability to manipulate objects, expand the human interface by putting the user in the 3D world with the use of a virtual reality (VR) headset, and be low-cost. The simplistic, low-cost, and intuitive controls of Gemini promote early adoption by businesses and medical personnel to grant increased telepresence needs. In addition, this platform can be utilized by robotics enthusiasts and university researchers studying humanoid robotics or human-robot interaction. This paper presents an overview of the Gemini robot’s mechanical, electrical, and programmatic systems. Upon completion of this study, it was found that Gemini was able to grant the ability to manipulate objects, increase user perception with intuitive controls, in addition to costing approximately 30% less than commercial telepresence robots. Furthermore, the paper is concluded with remarks on future iterations of the project

    Student understanding of the Boltzmann factor

    Get PDF
    We present results of our investigation into student understanding of the physical significance and utility of the Boltzmann factor in several simple models. We identify various justifications, both correct and incorrect, that students use when answering written questions that require application of the Boltzmann factor. Results from written data as well as teaching interviews suggest that many students can neither recognize situations in which the Boltzmann factor is applicable, nor articulate the physical significance of the Boltzmann factor as an expression for multiplicity, a fundamental quantity of statistical mechanics. The specific student difficulties seen in the written data led us to develop a guided-inquiry tutorial activity, centered around the derivation of the Boltzmann factor, for use in undergraduate statistical mechanics courses. We report on the development process of our tutorial, including data from teaching interviews and classroom observations on student discussions about the Boltzmann factor and its derivation during the tutorial development process. This additional information informed modifications that improved students' abilities to complete the tutorial during the allowed class time without sacrificing the effectiveness as we have measured it. These data also show an increase in students' appreciation of the origin and significance of the Boltzmann factor during the student discussions. Our findings provide evidence that working in groups to better understand the physical origins of the canonical probability distribution helps students gain a better understanding of when the Boltzmann factor is applicable and how to use it appropriately in answering relevant questions

    Identifying Student Difficulties with Entropy, Heat Engines, and the Carnot Cycle

    Get PDF
    We report on several specific student difficulties regarding the Second Law of Thermodynamics in the context of heat engines within upper-division undergraduates thermal physics courses. Data come from ungraded written surveys, graded homework assignments, and videotaped classroom observations of tutorial activities. Written data show that students in these courses do not clearly articulate the connection between the Carnot cycle and the Second Law after lecture instruction. This result is consistent both within and across student populations. Observation data provide evidence for myriad difficulties related to entropy and heat engines, including students' struggles in reasoning about situations that are physically impossible and failures to differentiate between differential and net changes of state properties of a system. Results herein may be seen as the application of previously documented difficulties in the context of heat engines, but others are novel and emphasize the subtle and complex nature of cyclic processes and heat engines, which are central to the teaching and learning of thermodynamics and its applications. Moreover, the sophistication of these difficulties is indicative of the more advanced thinking required of students at the upper division, whose developing knowledge and understanding give rise to questions and struggles that are inaccessible to novices

    Stroboscopic Training Enhances Anticipatory Timing

    Get PDF
    International Journal of Exercise Science 5(4) : 344-353, 2012. The dynamic aspects of sports often place heavy demands on visual processing. As such, an important goal for sports training should be to enhance visual abilities. Recent research has suggested that training in a stroboscopic environment, where visual experiences alternate between visible and obscured, may provide a means of improving attentional and visual abilities. The current study explored whether stroboscopic training could impact anticipatory timing—the ability to predict where a moving stimulus will be at a specific point in time. Anticipatory timing is a critical skill for both sports and non-sports activities, and thus finding training improvements could have broad impacts. Participants completed a pre-training assessment that used a Bassin Anticipation Timer to measure their abilities to accurately predict the timing of a moving visual stimulus. Immediately after this initial assessment, the participants completed training trials, but in one of two conditions. Those in the Control condition proceeded as before with no change. Those in the Strobe condition completed the training trials while wearing specialized eyewear that had lenses that alternated between transparent and opaque (rate of 100ms visible to 150ms opaque). Post-training assessments were administered immediately after training, 10-minutes after training, and 10-days after training. Compared to the Control group, the Strobe group was significantly more accurate immediately after training, was more likely to respond early than to respond late immediately after training and 10 minutes later, and was more consistent in their timing estimates immediately after training and 10 minutes later

    Student understanding of Taylor series expansions in statistical mechanics

    Get PDF
    One goal of physics instruction is to have students learn to make physical meaning of specific mathematical expressions, concepts, and procedures in different physical settings. As part of research investigating student learning in statistical physics, we are developing curriculum materials that guide students through a derivation of the Boltzmann factor using a Taylor series expansion of entropy. Using results from written surveys, classroom observations, and both individual think-aloud and teaching interviews, we present evidence that many students can recognize and interpret series expansions, but they often lack fluency in creating and using a Taylor series appropriately, despite previous exposures in both calculus and physics courses

    Swarm of One: Bottom-up Emergence of Stable Robot Bodies from Identical Cells

    Full text link
    Unlike most human-engineered systems, biological systems are emergent from low-level interactions, allowing much broader diversity and superior adaptation to the complex environments. Inspired by the process of morphogenesis in nature, a bottom-up design approach for robot morphology is proposed to treat a robot's body as an emergent response to underlying processes rather than a predefined shape. This paper presents Loopy, a "Swarm-of-One" polymorphic robot testbed that can be viewed simultaneously as a robotic swarm and a single robot. Loopy's shape is determined jointly by self-organization and morphological computing using physically linked homogeneous cells. Experimental results show that Loopy can form symmetric shapes consisting of lobes. Using the the same set of parameters, even small amounts of initial noise can change the number of lobes formed. However, once in a stable configuration, Loopy has an "inertia" to transfiguring in response to dynamic parameters. By making the connections among self-organization, morphological computing, and robot design, this paper lays the foundation for more adaptable robot designs in the future.Comment: 6 pages, 6 figures, IROS 202

    Identifying Student Difficulties with Heat Engines, Entropy, and the Carnot Cycle

    Get PDF
    We report on several specific student difficulties regarding the second law of thermodynamics in the context of heat engines within upper-division undergraduate thermal physics courses. Data come from ungraded written surveys, graded homework assignments, and videotaped classroom observations of tutorial activities. Written data show that students in these courses do not clearly articulate the connection between the Carnot cycle and the second law after lecture instruction. This result is consistent both within and across student populations. Observation data provide evidence for myriad difficulties related to entropy and heat engines, including students’ struggles in reasoning about situations that are physically impossible and failures to differentiate between differential and net changes of state properties of a system. Results herein may be seen as the application of previously documented difficulties in the context of heat engines, but others are novel and emphasize the subtle and complex nature of cyclic processes and heat engines, which are central to the teaching and learning of thermodynamics and its applications. Moreover, the sophistication of these difficulties is indicative of the more advanced thinking required of students at the upper division, whose developing knowledge and understanding give rise to questions and struggles that are inaccessible to novices
    • …
    corecore