37 research outputs found

    Nonlinear rheology of colloidal dispersions

    Get PDF
    Colloidal dispersions are commonly encountered in everyday life and represent an important class of complex fluid. Of particular significance for many commercial products and industrial processes is the ability to control and manipulate the macroscopic flow response of a dispersion by tuning the microscopic interactions between the constituents. An important step towards attaining this goal is the development of robust theoretical methods for predicting from first-principles the rheology and nonequilibrium microstructure of well defined model systems subject to external flow. In this review we give an overview of some promising theoretical approaches and the phenomena they seek to describe, focusing, for simplicity, on systems for which the colloidal particles interact via strongly repulsive, spherically symmetric interactions. In presenting the various theories, we will consider first low volume fraction systems, for which a number of exact results may be derived, before moving on to consider the intermediate and high volume fraction states which present both the most interesting physics and the most demanding technical challenges. In the high volume fraction regime particular emphasis will be given to the rheology of dynamically arrested states.Comment: Review articl

    The role of hardness on condition monitoring and lifing for high temperature power plant structural risk management

    Get PDF
    In this work, the use of hardness data in a novel predictive lifing model is explored. This study provides for the first time large amounts of site hardness data acquired during successive outages on an ageing coal fired power plant and draws conclusions regarding interpretation of these data in accordance with current practice, which is included in a case study. A novel, phenomenological relationship between room temperature hardness and creep data, obtained by uniaxial creep and impression creep tests, has been found and used for an innovative lifing approach that includes hardness data in a creep damage model. The latter is discussed with a description of how it could be practically implemented and validated in-service
    corecore