415 research outputs found

    The Hawaii Infrared Parallax Program. V. New T-Dwarf Members and Candidate Members of Nearby Young Moving Groups

    Get PDF
    We present a search for new planetary-mass members of nearby young moving groups (YMGs) using astrometry for 694 T and Y dwarfs, including 447 objects with parallaxes, mostly produced by recent large parallax programs from UKIRT and Spitzer. Using the BANYAN Σ\Sigma and LACEwING algorithms, we identify 30 new candidate YMG members, with spectral types of T0-T9 and distances of 104310-43 pc. Some candidates have unusually red colors and/or faint absolute magnitudes compared to field dwarfs with similar spectral types, providing supporting evidence for their youth, including 4 early-T dwarfs. We establish one of these, the variable T1.5 dwarf 2MASS J21392676++0220226, as a new planetary-mass member (14.61.6+3.214.6^{+3.2}_{-1.6} MJup_{\rm Jup}) of the Carina-Near group (200±50200\pm50 Myr) based on its full six-dimensional kinematics, including a new parallax measurement from CFHT. The high-amplitude variability of this object is suggestive of a young age, given the coexistence of variability and youth seen in previously known YMG T dwarfs. Our four latest-type (T8-T9) YMG candidates, WISE J031624.35++430709.1, ULAS J130217.21++130851.2, WISEPC J225540.74-311841.8, and WISE J233226.49-432510.6, if confirmed, will be the first free-floating planets (26\approx2-6 MJup_{\rm Jup}) whose ages and luminosities are compatible with both hot-start and cold-start evolutionary models, and thus overlap the properties of the directly-imaged planet 51 Eri b. Several of our early/mid-T candidates have peculiar near-infrared spectra, indicative of heterogenous photospheres or unresolved binarity. Radial velocity measurements needed for final membership assessment for most of our candidates await upcoming 20-30 meter class telescopes. In addition, we compile all 15 known T7-Y1 benchmarks and derive a homogeneous set of their effective temperatures, surface gravities, radii, and masses.Comment: ApJ, in press. 27 pages including 6 figures and 5 table

    Androgen receptor expression in the rat prostate is down-regulated by dietary phytoestrogens

    Get PDF
    BACKGROUND: It is well established that the growth of the prostate gland is a hormone-dependent phenomenon involving both androgenic and estrogenic control. Proliferation of prostate cells is, at least in part, under control of estrogen receptor beta (ER-beta). Phytoestrogens bind ER-beta with high affinity and therefore may have antiproliferative effects in the prostate. METHODS: The prostates of male Long-Evans rats fed a diet high in phytoestrogens (Phyto-600) or very low levels of phytoestrogens (Phyto-free) were analyzed to determine the impact of dietary phytoestrogens on prostate weight and androgen receptor (AR) expression in the prostate. RESULTS: Dietary phytoestrogens significantly decreased post-pubertal prostate weight gain in Phyto-600 vs Phyto-free fed males. Additionally, dietary phytoestrogens (Phyto-600) decreased AR expression in the prostate as determined by in situ hybridization. CONCLUSIONS: Soy phytoestrogens, present in diet, alter prostate growth presumably by binding ER-beta and subsequently reducing AR expression within the prostate

    Universal Computation with Arbitrary Polyomino Tiles in Non-Cooperative Self-Assembly

    Get PDF
    In this paper we explore the power of geometry to overcome the limitations of non-cooperative self-assembly. We define a generalization of the abstract Tile Assembly Model (aTAM), such that a tile system consists of a collection of polyomino tiles, the Polyomino Tile Assembly Model (polyTAM), and investigate the computational powers of polyTAM systems at temperature 1, where attachment among tiles occurs without glue cooperation (i.e., without the enforcement that more than one tile already existing in an assembly must contribute to the binding of a new tile). Systems composed of the unit-square tiles of the aTAM at temperature 1 are believed to be incapable of Turing universal computation (while cooperative systems, with temperature \u3e 1, are able). As our main result, we prove that for any polyomino P of size 3 or greater, there exists a temperature-1 polyTAM system containing only shape-P tiles that is computationally universal. Our proof leverages the geometric properties of these larger (relative to the aTAM) tiles and their abilities to effectively utilize geometric blocking of particular growth paths of assemblies, while allowing others to complete. In order to prove the computational powers of polyTAM systems, we also prove a number of geometric properties held by all polyominoes of size ≥ 3. To round out our main result, we provide strong evidence that size-1 (i.e. aTAM tiles) and size-2 polyomino systems are unlikely to be computationally universal by showing that such systems are incapable of geometric bitreading, which is a technique common to all currently known temperature-1 computationally universal systems. We further show that larger polyominoes with a limited number of binding positions are unlikely to be computationally universal, as they are only as powerful as temperature-1 aTAM systems. Finally, we connect our work with other work on domino self-assembly to show that temperature-1 assembly with at least 2 distinct shapes, regardless of the shapes or their sizes, allows for universal computation

    Intercomparison of freshwater fluxes over ocean and investigations into water budget closure

    Get PDF
    The development of algorithms for the retrieval of water cycle components from satellite data – such as total column water vapor content (TCWV), precipitation (P), latent heat flux, and evaporation (E) – has seen much progress in the past 3 decades. In the present study, we compare six recent satellite-based retrieval algorithms and ERA5 (the European Centre for Medium-Range Weather Forecasts' fifth reanalysis) freshwater flux (E−P) data regarding global and regional, seasonal and interannual variation to assess the degree of correspondence among them. The compared data sets are recent, freely available, and documented climate data records (CDRs), developed with a focus on stability and homogeneity of the time series, as opposed to instantaneous accuracy. One main finding of our study is the agreement of global ocean means of all E−P data sets within the uncertainty ranges of satellite-based data. Regionally, however, significant differences are found among the satellite data and with ERA5. Regression analyses of regional monthly means of E, P, and E−P against the statistical median of the satellite data ensemble (SEM) show that, despite substantial differences in global E patterns, deviations among E−P data are dominated by differences in P throughout the globe. E−P differences among data sets are spatially inhomogeneous. We observe that for ERA5 long-term global E−P is very close to 0 mm d−1 and that there is good agreement between land and ocean mean E−P, vertically integrated moisture flux divergence (VIMD), and global TCWV tendency. The fact that E and P are balanced globally provides an opportunity to investigate the consistency between E and P data sets. Over ocean, P (nearly) balances with E if the net transport of water vapor from ocean to land (approximated by over-ocean VIMD, i.e., ∇⋅(vq)ocean) is taken into account. On a monthly timescale, linear regression of Eocean−∇⋅(vq)ocean with Pocean yields R2=0.86 for ERA5, but smaller R2 values are found for satellite data sets. Global yearly climatological totals of water cycle components (E, P, E−P, and net transport from ocean to land and vice versa) calculated from the data sets used in this study are in agreement with previous studies, with ERA5 E and P occupying the upper part of the range. Over ocean, both the spread among satellite-based E and the difference between two satellite-based P data sets are greater than E−P, and these remain the largest sources of uncertainty within the observed global water budget. We conclude that, for a better understanding of the global water budget, the quality of E and P data sets needs to be improved, and the uncertainties more rigorously quantified

    Quiet Supersonic Flights 2018 (QSF18) Test: Galveston, Texas Risk Reduction for Future Community Testing with a Low-Boom Flight Demonstration Vehicle

    Get PDF
    The Quiet Supersonic Flights 2018 (QSF18) Program was designed to develop tools and methods for demonstration of overland supersonic flight with an acceptable sonic boom, and collect a large dataset of responses from a representative sample of the population. Phase 1 provided the basis for a low amplitude sonic boom testing in six different climate regions that will enable international regulatory agencies to draft a noise-based standard for certifying civilian supersonic overland flight. Phase 2 successfully executed a large scale test in Galveston, Texas, developed well documented data sets, calculated dose response relationships, yielded lessons, and identified future risk reduction activities

    The Two-Handed Tile Assembly Model Is Not Intrinsically Universal

    Get PDF
    In this paper, we study the intrinsic universality of the well-studied Two-Handed Tile Assembly Model (2HAM), in which two “supertile” assemblies, each consisting of one or more unit-square tiles, can fuse together (self-assemble) whenever their total attachment strength is at least the global temperature τ. Our main result is that for all τ′ < τ, each temperature-τ′ 2HAM tile system cannot simulate at least one temperature-τ 2HAM tile system. This impossibility result proves that the 2HAM is not intrinsically universal, in stark contrast to the simpler abstract Tile Assembly Model which was shown to be intrinsically universal (The tile assembly model is intrinsically universal, FOCS 2012). On the positive side, we prove that, for every fixed temperature τ ≥ 2, temperature-τ 2HAM tile systems are intrinsically universal: for each τ there is a single universal 2HAM tile set U that, when appropriately initialized, is capable of simulating the behavior of any temperature τ 2HAM tile system. As a corollary of these results we find an infinite set of infinite hierarchies of 2HAM systems with strictly increasing power within each hierarchy. Finally, we show how to construct, for each τ, a temperature-τ 2HAM system that simultaneously simulates all temperature-τ 2HAM systems

    The Two-Handed Tile Assembly Model is not Intrinsically Universal

    Get PDF
    The Two-Handed Tile Assembly Model (2HAM) is a model of algorithmic self-assembly in which large structures, or assemblies of tiles, are grown by the binding of smaller assemblies. In order to bind, two assemblies must have matching glues that can simultaneously touch each other, and stick together with strength that is at least the temperature τ, where τ is some fixed positive integer. We ask whether the 2HAM is intrinsically universal. In other words, we ask: is there a single 2HAM tile set U which can be used to simulate any instance of the model? Our main result is a negative answer to this question. We show that for all τ′ < τ, each temperature-τ′ 2HAM tile system does not simulate at least one temperature-τ 2HAM tile system. This impossibility result proves that the 2HAM is not intrinsically universal and stands in contrast to the fact that the (single-tile addition) abstract Tile Assembly Model is intrinsically universal. On the positive side, we prove that, for every fixed temperature τ ≥ 2, temperature-τ 2HAM tile systems are indeed intrinsically universal. In other words, for each τ there is a single intrinsically universal 2HAM tile set U_τ that, when appropriately initialized, is capable of simulating the behavior of any temperature-τ 2HAM tile system. As a corollary, we find an infinite set of infinite hierarchies of 2HAM systems with strictly increasing simulation power within each hierarchy. Finally, we show that for each τ, there is a temperature-τ 2HAM system that simultaneously simulates all temperature-τ 2HAM systems

    Accumulation of a polyisoprene-linked amino sugar in polymyxin-resistant Salmonella typhimurium and Escherichia coli: Structural characterization and transfer to lipid A in the periplasm

    Get PDF
    Polymyxin-resistant mutants of Escherichia coli and Salmonella typhimurium accumulate a novel minor lipid that can donate 4-amino-4-deoxy-L-arabinose units (L-Ara4N) to lipid A. We now report the purification of this lipid from a pss- pmrAC mutant of E. coli and assign its structure as undecaprenyl phosphate-α-L-Ara4N. Approximately 0.2 mg of homogeneous material was isolated from an 8-liter culture by solvent extraction, followed by chromatography on DEAE-cellulose, C18 reverse phase resin, and silicic acid. Matrix-assisted laser desorption ionization/time of flight mass spectrometry in the negative mode yielded a single species [M - H]- at m/z 977.5, consistent with undecaprenyl phosphate-α-L-Ara4N (Mr = 978.41). 31P NMR spectroscopy showed a single phosphorus atom at -0.44 ppm characteristic of a phosphodiester linkage. Selective inverse decoupling difference spectroscopy demonstrated that the undecaprenyl phosphate group is attached to the anomeric carbon of the L-Ara4N unit. One- and two-dimensional 1H NMR studies confirmed the presence of a polyisoprene chain and a sugar moiety with chemical shifts and coupling constants expected for an equatorially substituted arabinopyranoside. Heteronuclear multiple-quantum coherence spectroscopy analysis demonstrated that a nitrogen atom is attached to C-4 of the sugar residue. The purified donor supports in vitro conversion of lipid IVA to lipid IIA, which is substituted with a single L-Ara4N moiety. The identification of undecaprenyl phosphate-α -L-Ara4N implies that L-Ara4N transfer to lipid A occurs in the periplasm of polymyxin-resistant strains, and establishes a new enzymatic pathway by which Gram-negative bacteria acquire antibiotic resistance
    corecore