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Universal Computation with Arbitrary Polyomino Tiles in

Non-Cooperative Self-Assembly∗

Sándor P. Fekete † Jacob Hendricks ‡ Matthew J. Patitz § Trent A. Rogers ¶

Robert T. Schweller ‖

Abstract

In this paper we explore the power of geometry to overcome

the limitations of non-cooperative self-assembly. We define a

generalization of the abstract Tile Assembly Model (aTAM),

such that a tile system consists of a collection of polyomino

tiles, the Polyomino Tile Assembly Model (polyTAM), and

investigate the computational powers of polyTAM systems

at temperature 1, where attachment among tiles occurs

without glue cooperation (i.e., without the enforcement that

more than one tile already existing in an assembly must

contribute to the binding of a new tile). Systems composed

of the unit-square tiles of the aTAM at temperature 1 are

believed to be incapable of Turing universal computation

(while cooperative systems, with temperature > 1, are able).

As our main result, we prove that for any polyomino P

of size 3 or greater, there exists a temperature-1 polyTAM

system containing only shape-P tiles that is computationally

universal. Our proof leverages the geometric properties of

these larger (relative to the aTAM) tiles and their abilities

to effectively utilize geometric blocking of particular growth

paths of assemblies, while allowing others to complete.

In order to prove the computational powers of polyTAM

systems, we also prove a number of geometric properties

held by all polyominoes of size ≥ 3.

∗A full version of this paper can be found at [9].
†Department of Computer Science, TU Braunschweig, 38106

Braunschweig, Germany. s.fekete@tu-bs.de.
‡Department of Computer Science and Computer Engineering,
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edu. This author’s research was supported in part by NSF grants
CCF-1117672 and CCF-1422152.
§Department of Computer Science and Computer Engineer-
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To round out our main result, we provide strong ev-

idence that size-1 (i.e. aTAM tiles) and size-2 polyomino

systems are unlikely to be computationally universal by

showing that such systems are incapable of geometric bit-

reading, which is a technique common to all currently known

temperature-1 computationally universal systems. We fur-

ther show that larger polyominoes with a limited number

of binding positions are unlikely to be computationally uni-

versal, as they are only as powerful as temperature-1 aTAM

systems. Finally, we connect our work with other work on

domino self-assembly to show that temperature-1 assembly

with at least 2 distinct shapes, regardless of the shapes or

their sizes, allows for universal computation.

1 Introduction

Theoretical studies of algorithmic self-assembly have
produced a wide variety of results that establish the
computational power of tile-based self-assembling sys-
tems. From the introduction of the first and per-
haps simplest model, the abstract Tile Assembly Model
(aTAM) [26], it was shown that self-assembling systems,
which are based on relatively simple components au-
tonomously coalescing to form more complex structures,
are capable of Turing-universal computation. This com-
putational power exists within the aTAM, and has been
harnessed to algorithmically guide extremely complex
theoretical constructions (e.g. [5, 14, 20, 21, 23, 25]) and
has even been exploited within laboratories to build
nanoscale self-assembling systems from DNA-based tiles
which self-assemble following algorithmic behavior (e.g.
[1, 8, 13,15,22,24]).

While physical implementations of these systems
are constantly increasing in scale, complexity, and ro-
bustness, they are orders of magnitude shy of achiev-
ing results similar to those of many naturally occurring
self-assembling systems, especially those found in biol-
ogy (e.g. the formation of many cellular structures or
viruses). This disparity motivates theoretical studies
that can focus efforts on first discovering the “tricks”
used so successfully by nature, and then on incorpo-
rating them into our own models and systems. One
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of the fundamental properties so successfully leveraged
by many natural systems, but absent from models such
as the aTAM, is geometric complexity of components.
For instance, self-assembly in biological systems relies
heavily upon the complex 3-dimensional structures of
proteins, while tile-assembly systems are typically re-
stricted to basic square (or cubic) tiles. In this paper,
we greatly extend previous work that has begun to in-
corporate geometric aspects of self-assembling compo-
nents [3, 6, 10, 12] with the development of a model al-
lowing for more geometrically complex tiles, called poly-
ominoes, and an examination of the surprising compu-
tational powers of systems composed of polyominoes.

The process of tile assembly begins from a seed
structure, typically a single tile, and proceeds with tiles
attaching one at a time to the growing assembly. Tiles
have glues, taken from a set of glue types, around their
perimeters which allow them to attach to each other if
their glues match. Algorithmic self-assembling systems
developed by researchers, both theoretical and exper-
imental, tend to fundamentally employ an important
aspect of tile assembly known as cooperation. In the-
oretical models, cooperation is available when a par-
ticular parameter, known as the temperature, is set to
a value > 1 which can then enforce that the bind-
ing of a tile to a growing assembly can only occur if
that tile matches more than one glue on the perime-
ter of the assembly. Using cooperation, it is simple to
show that systems in the aTAM are capable of univer-
sal computation (by simulating particular cellular au-
tomata [26], or arbitrary Turing machines [14, 21, 25],
for instance). However, it has long been conjectured
that in the aTAM without cooperation, i.e. in systems
where the temperature is equal to 1, universal computa-
tion is impossible [7,16,17]. Interestingly, though, a col-
lection of “workarounds” have been devised in the form
of new models with a variety of properties and param-
eters which make computation possible at temperature
1 (e.g. [2, 10,12,18,19]).

In this paper, we introduce the Polyomino Tile As-
sembly Model (polyTAM), in which each tile is com-
posed of a collection of unit squares joined along their
edges. This allows for tiles with arbitrary geometric
complexity and a much larger variety of shapes than in
earlier work involving systems composed of both square
and 2 × 1 rectangular tiles [11, 12], or those with tiles
composed of square bodies and edges with bumps and
dents [10]. Our results prove that geometry, in the
polyTAM as in natural self-assembling systems, affords
great power. Namely, any polyomino shape which is
composed of only 3 or more unit squares has enough
geometric complexity to allow a polyTAM system at
temperature 1, composed only of tiles of that shape, to

perform Turing universal computation. This impressive
potency is perhaps even more surprising when it is re-
alized that while a single unit-square polyomino (a.k.a.
a monomino, or a standard aTAM tile) is conjectured
not to provide this power, the same shape expanded in
scale to a 2 × 2 square polyomino does. The key to
this power is the ability of arbitrary polyominoes of size
3 or greater to both combine with each other to form
regular grids, as well as to combine in a variety of rela-
tive offsets that allow some tiles to be shifted relatively
to those grids and then perform geometric blocking of
the growth of specific configurations of paths of tiles,
while allowing other paths to complete their growth.
With just this seemingly simple property, it is possible
to design temperature-1 systems of polyominoes that
can simulate arbitrary Turing machines.

In addition to this main positive result about the
computational abilities of all polyominoes of size ≥ 3,
we also provide negative results that further help to
refine understanding of exactly what geometric prop-
erties are needed for Turing universal computation in
temperature-1 self-assembly. We prove that a funda-
mental gadget (which we call the bit-reading gadget)
used within all known systems that can compute at tem-
perature 1 in any tile-assembly model, is impossible to
construct with either the square tiles of the aTAM or
with dominoes (a.k.a. duples). This provides further
evidence that systems composed solely of those shapes
are incapable of universal computation. Furthermore,
we prove that regardless of the size and shape of a poly-
omino, systems composed of polyominoes with only (1)
≤ 3 positions on its perimeter at which to place glues,
or (2) 4 positions for glues that are restricted to bind-
ing with each other as complementary pairs of sides, are
no more powerful than aTAM temperature-1 systems,
again providing evidence that they are incapable of per-
forming Turing universal computation.

This paper is organized as follows. In Section 2
we define the Polyomino Tile Assembly Model and re-
lated terminology. In Section 3 we formally define a
bit-reading gadget and then present an overview of how
they can be used in a temperature-1 tile assembly sys-
tem to simulate arbitrary Turing machines. Then, in
Section 4 we prove some fundamental lemmas about
the geometric properties of polyominoes and the ways
in which they can combine in the plane to form grids.
Section 5 contains the proof of our main result, while
Section 6 contains our results that hint at the computa-
tional weakness of some systems. Finally, Section 7 de-
scribes how the positive results of this paper along with
that of [12] proves that any polyomino system composed
of any two polyomino shapes is capable of universal com-
putation.
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2 Polyomino Tile Assembly Model

In this section we define the Polyomino Tile Assembly
Model (polyTAM) and relevant terminology.

Polyomino Tiles A polyomino is a plane geomet-
ric figure formed by joining one or more equal unit
squares edge to edge; it can also be considered a finite
subset of the regular square tiling with a connected in-
terior. For convenience, we will assume that each unit
square is centered on a point in Z2. We define the set
of edges of a polyomino to be the set of faces from the
constituent unit squares of the polyomino that lie on
the boundary of the polyomino shape. A polyomino tile
is a polyomino with a subset of its edges labeled from
some glue alphabet Σ, with each glue having an integer
strength value. Two tiles are said to bind when they are
placed so that they have non-overlapping interiors and
adjacent edges with matching glues; each matching glue
binds with force equal to its strength value. An assem-
bly is any connected set of polyominoes whose interiors
do not overlap. Given a positive integer τ ∈ N, an as-
sembly is said to be τ -stable or (just stable if τ is clear
from context), if any partition of the assembly into two
non-empty groups (without cutting individual polyomi-
noes) must separate bound glues whose strengths sum
to ≥ τ .

The bounding rectangle B around a polyomino P
is the rectangle with minimal area (and corners lying
in Z2) that contains P . For each polyomino shape, we
designate one pixel (i.e. one of the squares making up
P ) p as a distinguished pixel that we use as a reference
point. More formally, a pixel p in a polyomino P (or
polyomino tile) is defined in the following manner. Place
P in the plane so that the southwest corner of the
bounding rectangle of P lies at the origin. Then a pixel
p = (p1, p2) ∈ P is a point in Z2 which is occupied by a
unit square composing the polyomino P . We say that
a pixel p′ ∈ P lies on the perimeter of the bounding
rectangle B if an edge of the pixel p′ lies on an edge of
B.

Tile System A tile assembly system (TAS) is an
ordered triple T = (T, σ, τ) (where T is a set of
polyomino tiles, and σ is a τ -stable assembly called
the seed consisting of integer translations of elements
of T ). τ is the temperature of the system, specifying
the minimum binding strength necessary for a tile to
attach to an assembly. Throughout this paper, the
temperature of all systems is assumed to be 1, and
we therefore frequently omit the temperature from the
definition of a system (i.e. T = (T, σ)).

If the tiles in T all have the same polyomino shape,
T is said to be a single-shape system; more generally
T is said to be a c-shape system if there are c distinct
shapes in T . If not stated otherwise, systems described

in this paper should by default be assumed to be single-
shape systems. If T consists of unit-square tiles, T is
said to be a monomino system.

Assembly Process Given a tile-assembly system
T = (T, σ, τ), we now define the set of producible assem-
blies A[T ] that can be derived from T , as well as the
terminal assemblies, A�[T ], which are the producible
assemblies to which no additional tiles can attach. The
assembly process begins from σ and proceeds by sin-
gle steps in which any single copy of some tile t ∈ T
may be attached to the current assembly A, provided
that it can be translated so that its placement does not
overlap any previously placed tiles and it binds with
strength ≥ τ . For a system T and assembly A, if such a
t ∈ T exists, we say A→T1 A′ (i.e. A grows to A′ via a
single tile attachment). We use the notation A→T A′′,
when A grows into A′′ via 0 or more steps. Assem-
bly proceeds asynchronously and nondeterministically,
attaching one tile at a time, until no further tiles can
attach. An assembly sequence in a TAS T is a (finite or
infinite) sequence ~α = (α0 = σ, α1, α2, . . .) of assemblies
in which each αi+1 is obtained from αi by the addition
of a single tile. The set of producible assemblies A[T ]
is defined to be the set of all assemblies A such that
there exists an assembly sequence for T ending with
A (possibly in the limit). The set of terminal assem-
blies A�[T ] ⊆ A[T ] is the set of producible assemblies
such that for all A ∈ A�[T ] there exists no assembly
B ∈ A[T ] in which A →T1 B. A system T is said to
be directed if |A�[T ]| = 1, i.e., if it has exactly one
terminal assembly.

Note that the aTAM is simply a specific case of the
polyTAM in which all tiles are monominoes, i.e., single
unit squares.

3 Universal Computation with Geometric
Bit-Reading

In this section we provide an overview of how universal
computation can be performed in a temperature-1 sys-
tem with appropriate use of geometric aspects of tiles
and assemblies. Refer to Figure 1 for an illustration.

3.1 Bit-Reading Gadgets First, we discuss a prim-
itive tile-assembly component that enables computation
by self-assembling systems. This component is called
the bit-reading gadget, and essentially consists of pre-
existing assemblies that appropriately encode bit values
(i.e., 0 or 1) and paths that grow past them and are
able to “read” the values of the encoded bits; this re-
sults in those bits being encoded in the tile types of the
paths beyond the encoding assemblies. In tile-assembly
systems in which the temperature is ≥ 2, a bit-reader
gadget is trivial: the assembly encoding the bit value
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can be a single tile with an exposed glue that encodes
the bit value, and the path that grows past to read the
value simply ensures that a tile must be placed coopera-
tively with, and adjacent to, that encoding the bit (i.e.,
the path forces a tile to be placed that can only bind if
one of its glues matches that exposed by the last tile of
the path, and the other matches the glue encoding the
bit value). However, in a temperature-1 system, cooper-
ative binding of tiles cannot be enforced, and therefore
the encoding of bits must be done using geometry. Fig-
ure 1 provides an intuitive overview of a temperature-1
system with a bit-reading gadget. Essentially, depend-
ing on which bit is encoded by the assembly to be read,
exactly one of two types of paths can complete growth
past it, implicitly specifying the bit that was read. It is
important that the bit reading must be unambiguous,
i.e., depending on the bit written by the pre-existing
assembly, exactly one type of path (i.e., the one that
denotes the bit that was written) can possibly complete
growth, with all paths not representing that bit being
prevented. Furthermore, the correct type of path must
always be able to grow. Therefore, it cannot be the
case that either all paths can be blocked from growth,
or that any path not of the correct type can complete,
regardless of whether a path of the correct type also
completes, and these conditions must hold for any valid
assembly sequence to guarantee correct computation.

Definition 3.1. We say that a bit-reading gadget ex-
ists for a tile assembly system T = (T, σ, τ), if the fol-
lowing hold. Let T0 ⊂ T and T1 ⊂ T , with T0 ∩ T1 = ∅,
be subsets of tile types which represent the bits 0 and 1,
respectively. For some producible assembly α ∈ A[T ],
there exist two connected subassemblies, α0, α1 v α
(with w equal to the maximal width of α0 and α1, i.e.,
the largest extent in x-direction spanned by either sub-
assembly), such that if:

1. α is translated so that α0 has its minimal y-
coordinate ≤ 0 and its minimal x-coordinate = 1,

2. a tile of some type t ∈ T is placed at (w + n, h),
where n, h ≥ 1, and

3. the tiles of α0 are the only tiles of α in the first
quadrant to the left of t,

then at least one path must grow from t (staying strictly
above the x-axis) and place a tile of some type t0 ∈ T0 as
the first tile with x-coordinate = 0, while no such path
can place a tile of type t′ ∈ (T \ T0) as the first tile to
with x-coordinate = 0. (This constitutes the reading of
a 0 bit.)

Additionally, if α1 is used in place of α0 with the
same constraints on all tile placements, t is placed in

the same location as before, and no other tiles of α are
in the first quadrant to the left of t, then at least one
path must grow from t and stay strictly above the x-axis
and strictly to the left of t, eventually placing a tile of
some type t1 ∈ T1 as the first tile with x-coordinate = 0,
while no such path can place a tile of type t′ ∈ (T \T1) as
the first tile with x-coordinate = 0. (Thus constituting
the reading of a 1 bit.)

We refer to α0 and α1 as the bit writers, and the
paths which grow from t as the bit readers. Also,
note that while this definition is specific to a bit-reader
gadget in which the bit readers grow from right to
left, any rotation of a bit reader is valid by suitably
rotating the positions and directions of Definition 3.1.
As mentioned in Figure 1, depending on the actual
geometries of the polyominoes used and their careful
placement, it may be possible to enforce the necessary
blocking of all paths of the wrong type, while still
allowing at least one path of the correct type to complete
growth in any valid assembly sequence. The necessary
requirements on these geometries and placements are
the subject of the novel results of this paper.

3.2 Turing-Machine Simulation In order to show
that a polyomino shape (i.e., a system composed of tiles
of only that shape) is computationally universal at τ =
1, we show how it is possible to simulate an arbitrary
Turing machine using such a polyomino system. In
order to simulate an arbitrary Turing machine, we show
how to self-assemble a zig-zag Turing machine [2, 19].
A zig-zag Turing machine at τ = 1 works by starting
with its input row as the seed assembly, then growing
rows one by one, alternating growth from left to right
with growth from right to left. As a row grows across
the top of the row immediately beneath it, it does so by
forming a path of single tile width, with tiles connected
by glues, which pass information horizontally through
their glues, while the geometry of the row below causes
only one of two choices of paths to grow at regular
intervals, effectively passing information vertically via
the geometry, using bit-reading gadgets.

Each cell of the Turing machine’s tape is encoded by
a series of bit-reader gadgets that encode in binary the
symbol in that cell and, if the read/write head is located
there, what state the machine is in. Additionally,
as each cell is read by the row above, the necessary
information must be geometrically written above it
so that the next row can read it. See Figure 2 for
an example depicting a high-level schematic without
showing details of the individual polyominoes. Figure 3
shows the same system after two rows have completed
growth.
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Figure 1: Abstract schematic of a bit-reading gadget. (Left) The blue path grown from t “reads” the bit 1 from
α0 (by being allowed to grow to x = 0 and placing a tile t0 ∈ T0), while the yellow path (which could read a 0 bit)
is blocked by α0. (Right) The yellow path grown from t reads the bit 0 from α1, while the blue path that could
potentially read a 1 is blocked by α1. Clearly, the specific geometry of the used polyomino tiles and assemblies is
important in allowing the yellow path in the left figure to be blocked without also blocking the blue path.

For a more specific example that shows the place-
ment of individual, actual polyomino tiles as well as the
order of their growth, see Figure 4. Note that the simu-
lation of a zig-zag Turing machine can be performed by
horizontal or vertical growth, and in any orientation.

4 Technical Lemmas: Grids of Polyominoes

As mentioned above, in order to show that all poly-
ominoes of size greater than 2 are universal, we show
that a bit-reading gadget can be constructed with these
polyominoes. In this section we show two lemmas about
single-shaped polyTAM systems that will aid in the con-
struction of bit-writers used to show that any polyomino
of size greater than 2 can be used to define a single-
shape polyTAM system capable of universal computa-
tion. Throughout this section, any mention of a poly-
TAM system refers to a single-shape system.

The following lemma says that if a polyomino P can
be translated by a vector ~v so that no pixel positions
of the translated polyomino overlap the pixel positions
of P , then for any integer c 6= 0, no pixel positions
of P translated by c · ~v overlap the pixel positions of
P . The proof of Lemma 4.1 can be found in [3]; the
statement of the lemma has been included for the sake
of completeness.

Lemma 4.1. Consider a two-dimensional, bounded,
connected, regular closed set S, i.e., S is equal to the
topological closure of its interior points. Suppose S is
translated by a vector v to obtain shape Sv, such that
S and Sv have disjoint interiors. Then the shape Sc∗v
obtained by translating S by c ∗ v for any integer c 6= 0
and S have disjoint interiors.

Informally, the following lemma says that any poly-
omino gives rise to a polyTAM system that can produce
an infinite “grid” of polyominoes, as shown in Figure 5.

Lemma 4.2. Given a polyomino P . There exists a
directed, singly seeded, single-shape tile system T =
(T, σ) (where the seed is placed so that pixel p ∈ P is
at location (0, 0) and the shape of tiles in T is P ) and
vectors ~v, ~w ∈ Z2, such that T produces the terminal
assembly α, which we refer to as a grid, with the
following properties. (1) Every position in α of the form
c1~v + c2 ~w, where c1, c2 ∈ Z, is occupied by the pixel p,
and (2) for every c1, c2 ∈ Z, the position in Z2 of the
form c1~v + c2 ~w is occupied by the pixel p for some tile
in α.

Details of the proof are omitted for space reasons
and can be found in the full paper [9].

Let p, p′ ∈ P be distinct pixels in the polyomino
P at positions (x, y) and (x′, y′) respectively, let ~r =
(x−x′, y−y′), and let ~v, ~w be as defined in Lemma 4.2.
Then, if there exists c1, c2 ∈ Z such that (x, y) +
c1~v + c2 ~w = (x′, y′), we say that the polyomino which
occupies (x′, y′) is ~r-shifted with respect to (or relative
to) the polyomino at (x, y). If a polyomino at position
(x′, y′) is 0-shifted with respect to a polyomino at (x, y),
we say that the polyomino at position (x′, y′) is on grid
with the polyomino at (x, y). If a polyomino is not
on grid with a polyomino at (x, y), we say that the
polyomino is off grid. Henceforth, if we do not mention
the tile which another tile is shifted in respect to, assume
that the tile is shifted with respect to the seed.

For the remainder of this section, for a polyomino P ,
we let V ⊂ Z2 denote the set of vectors such that ~r ∈ V
provided that there exists some directed, singly seeded
system, single shape T ′ = (T ′, σ′) with shape given
by P whose terminal assembly α′ contains an ~r-shifted
polyomino tile, and we let B denote the subset of vectors
B ⊂ V such that ~b ∈ B provided that there exists a
directed, singly seeded system, single shape T = (T, σ)
with shape given by P such that the terminal assembly
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bit writer bit writer bit writer bit writer

bit writer bit writer

bit reader bit reader bit reader

bit writer bit writer bit writer bit writer

bit writer

bit reader bit reader

bit writer bit writer bit writer bit writer

bit writer

bit reader

bit writer bit writer bit writer bit writer

bit reader

bit writer bit writer bit writer bit writer

bit reader

bit writer bit writer bit writer bit writer

Figure 2: High-level schematic view of a zig-zag Turing
machine and the bit-reading/writing gadgets that make
up each row of the simulation. The bottom shows
the seed row, consisting of bit-writer gadgets separated
by spacers. Then, depicted as consecutive upward
figures, the second row begins its growth. Yellow/blue
portions depict locations of bit-reader gadgets (for 0 and
1, respectively), which grow pink paths upward after
completing in order to grow bit writer gadgets (grey),
and then gold spacers back down to the point where the
next bit reader can grow.

α of T consists of exactly two tiles: the seed tile σ and a
~b-shifted tile. B can be thought of as the set of vectors
such that the polyomino P and a copy of P shifted by a
vector in B are non-overlapping and contain pixels that
share a common edge. We can think of B as a set of
basis vectors for V in the following sense. If ~r ∈ V , then
~r can be written as a linear combination of shifts in B.
The following lemma is a more formal statement of this
fact.

bit writer bit writer bit writer bit writer

bit writer bit writer bit writer bit writer

bit writer bit writer bit writer bit writer

bit reader bit reader bit reader bit reader

bit reader bit reader bit reader bit reader

Figure 3: High-level schematic view of a zig-zag Turing
machine and the bit-reading/writing gadgets that make
up the first two rows of simulation.

2

3 4

5

12

4

6
71

5
3

2

3
4

5

7

1
2

6
1

7

3

5

4
6

2

3 4

5

12

4

6
71

5
3

1

2

3 4
5 6

2

3
4

5

7

1
2

6
1

7

3

5

4
6

2
3

5

61

2

3

1

4 5
77

6

2

34

5

1 2

4

6
7 1

5
3

1

6

5

3
2

4 4

2

34

5

1 2

4

6
7 1

5
3

2
3

5

6

1

4

1

2

3
4 5

7
6

2

3
4

5

7

1
2

6
1

7

3

5

4
6

2
3

5

6

1

4

2

3
4

5

7

1
2

6
1

7

3

5

4
6

1

2

3
4 5

7
6

1 21 21 21 2 1

4

2

3
1

876

2

3

4

5

2

3 4

5

12

4

6
71

5
3

2

3
4

5

7

1
2

6
1

7

3

5

4
6

2

34

5

1 2

4

6
7 1

5
3

2

3
4

5

7

1
2

6
1

7

3

5

4
6

read left-to-right read right-to-left

Figure 4: The system of Figure 2 after two rows of
the zig-zag simulation have been completed (omitting
the output bit writer gadgets of the second row), im-
plemented with “plus-sign” polyominoes. The bottom
left shows 0 and 1 bit-writer and reader combinations,
with the writer having grown from right to left and the
reader from left to right. The bottom right shows the
same, but with growth directions reversed. Grey tiles
represent bit-writer gadgets. Green tiles represent the
beginning of bit-reader gadgets that are common to ei-
ther bit; yellow represents the path that can grow to
signify a 0 bit being read, and blue a 1 bit. Other colors
correspond to those for the gadgets used in Figure 2,
with numbers corresponding to the growth order of the
tiles in each gadget.

Lemma 4.3. For any vector ~r ∈ V , ~r = Σci~bi for some
ci ∈ Z and ~bi ∈ B.

Proof. This follows from the fact that if ~r ∈ V , then
there exists some directed, singly seeded system T =
(T, σ) which contains an ~r-shifted polyomino tile A.
Then, there must be a path of neighboring polyomino
tiles from the seed tile S to A. Starting from S, each
consecutive tile along this path to A must be a ~b-shifted
tile for some ~b in B, and the sum of these vectors is ~r.�
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w
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w
v

Figure 5: A lattice formed from an example polyomino,
using the vectors ~v and ~w.

For a rectangle R and a tile T , we say that T lies
in the southeast (respectively northwest) corner of R iff
the south and east edges of the bounding rectangle of
the tile T lie on the south and east edges of R. Let V
contain every linear combination Σci~bi for ci ∈ Z and
~bi ∈ B. The next two lemmas formalize the following
notion. For c ∈ Z and~b ∈ B, the following lemma shows
how if ~r = c ·~b, we can give a system T~r that contains
an ~r-shifted tile. Furthermore, the properties given in
the lemma statement ensure that if we have two such
system, T~r1 and T~r2 , corresponding to two shift vectors
~r1 and ~r2, T~r1 and T~r2 can be “concatenated” to give a
system that contains an (~r1+~r2)-shifted polyomino tile.
See Figure 6 for schematic depictions of the properties
given in the following lemma.

Lemma 4.4. Let ~r = c · ~b for any c ∈ Z and ~b ∈
B. Then there exists some directed, singly seeded
system T = (T, σ) with all tiles shaped P such that
the terminal assembly α of T contains an ~r-shifted
tile. Moreover, the system T and assembly α have the
following properties.

1. There is a unique assembly sequence that yields α,

2. For some m,n ∈ N, α is contained in an m × n
rectangle R and the seed tile S lies in the southeast
corner of R, and

3. the last tile, A, to attach to α lies in the northwest
corner of R.

Please see the full paper [9] for the proof of
Lemma 4.4.

S
A1

AcT1

Tk

(a)

S

Ac

A1

HS'

T1

Tk

(b)

S

A1

Ac

T1

Tk

T2

(c)

S

Tk

T1T2

A1

Ac

(d)

Figure 6: A depiction of the properties given in
Lemma 4.4 for four different cases. Each of the small
rectangles (red, green, blue or gray in color) serves as
the bounding rectangle of some polyomino. Hence, α
is contained in the union of all of the regions bounded
by these rectangles. The seed tile S of α is contained
in the green rectangle. As assembly proceeds from the
seed the first r-shifted polyomino tile is Ac. From this
point on in the assembly process, the rectangles are on
grid with Ac.

As previously mentioned, the properties given in
Lemma 4.4 ensure that if we have two such systems,
T~r1 and T~r2 corresponding to two shift vectors ~r1 and
~r2, T~r1 and T~r2 can be “concatenated” to give a system
that contains an (~r1 + ~r2)-shifted polyomino tile. The
following lemma formalizes this notion of “concatena-
tion”.

Lemma 4.5. Let ~r = Σn
i=0ci

~bi for any ci ∈ Z and
~bi ∈ B. Then there exists some directed, singly seeded
system T = (T, σ) with all tiles shaped P such that
the terminal assembly α of T contains an ~r-shifted
polyomino. Moreover, the system T and assembly α
have the following properties.

1. There is a unique assembly sequence that yields α,

2. For some m,n ∈ N, α is contained in an m × n
rectangle R and the seed tile S lies in the southeast
corner of R, and

3. the last polyomino tile, A, to attach in the system
lies in the northwest corner of R.

Proof. This follows by applying Lemma 4.4 to each of
the summands of ~r = Σci~bi. �

In Lemma 4.5, we start with a seed tile in the
southeast corner of a rectangular region R and proceed
to place an r-shifted tile in the northwest corner of
the rectangle. Note that by using the techniques used
to prove Lemma 4.4 and Lemma 4.5, we can show
analogous lemmas where the seed tile lies in any corner
of R and an r-shifted tile lies in the opposite corner.
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Now we state the main lemma for this section. This
lemma will allow us to construct bit-writing gadgets
used in the construction given in Section 5. Intuitively,
the lemma states that given a polyomino P and vector
~r ∈ V , we can define a polyTAM system that starts
growth from a seed tile, S, in the southeast corner
of a rectangle R, and without growing outside of R,
places ~r-shifted tiles on the west edge of R in such
a way that it is possible to then continue growth to
the west of R. The possibility of continuing growth
to the west of R is formally stated as Property 4 in
Lemma 4.6. This lemma will allow us to assemble a
series of bit-writers while also resting assured that once
these bit-writers have assembled, bit-reader assemblies
can continue growth. It is helpful to see Figure 7 for an
overview of the properties given in the following lemma.

R

R1

R2

m1

n1

m

n

m2

n2

R'

n'

m'

T1

Tl

C1

Cj

S

T2

...

...
Tl-1

Tl-2Tl-3Tl-4Tl-5

Tl-6

Ak

Bh

B1

A1

...

...

...

...
Figure 7: The rectangular region R1 contains tiles of
α defined using Lemma 4.5 with vector ~r. The red
rectangular regions each serve as the bounding rectangle
of an ~r-shifted tile of α. This path of tiles, {Ti}li=1,
places a final tile in the northwest corner of the region
R2. R2 contains tiles of α defined using Lemma 4.5
with vector −~r-shifted. The blue rectangular regions
each contain a single tile that is on grid with S. This
path of tiles places a final tile in the northeast corner
of the region R′. Note that by modifying the path of
tiles {Ti}li=1, we can make the dimension m′ and n′ of
R′ arbitrarily large.

Lemma 4.6. Let P be a polyomino. Let ~r be a vector
in V . Then there exists a directed, singly seeded system
T = (T, σ) with all tiles of shape P which produces α
such that T and α have the following properties.

1. There is a unique assembly sequence that yields α,

2. for some m,n ∈ N, α is contained in an m × n
rectangle R and the seed tile S lies in the southeast
corner of R,

3. for any tile A of α such that the west edge of the
bounding rectangle of A lies on the west edges of R,
A is ~r-shifted, and

4. for any m′′, n′′ ∈ N, we can choose T such that
the last tile L to attach to α lies on grid in the
northeast corner of a rectangle R′ with dimensions
m′ × n′ where m′ > m′′ and n′ > n′′. Moreover,
the south and west edges of R′ lie on the south and
west edges of R, and no portion of any tile of α lies
inside of R′ and outside of the bounding rectangle
of L.

Please see the full paper [9] for the proof of
Lemma 4.6.

As in Lemma 4.5, we start with a seed tile in the
southeast corner of a rectangular region R and proceed
to place r-shifted tiles on the west edge of the rectangle.
Note that we can show analogous lemmas where the seed
tile starts in any corner of a rectangle R, and r-shifted
tiles are placed on a chosen opposite edge.

5 All Polyominoes of Size at Least 3 Can
Perform Universal Computation at τ = 1

We can now proceed to state our main result: any poly-
omino P of size at least three can be used for polyomino
tile-assembly systems that are computationally univer-
sal at temperature 1. Formally stated:

Theorem 5.1. Let P be a polyomino such that |P | ≥ 3.
Then for every standard Turing Machine M and input
w, there exists a TAS with τ = 1 consisting only of tiles
of shape P that simulates M on w.

It follows from the procedure outlined in Section 3.2
and the Lemmas of Section 4 that in order to simulate
an arbitrary Turing Machine by a TAS consisting only
of tiles of some polyomino shape P , it is sufficient to
construct a system consisting only of tiles of shape P
for which there exists a bit-reading gadget, because the
additional paths required for a zig-zag Turing machine
simulation are guaranteed to be producible by the
lemmas of Section 4.

To simplify our proof, we consider different cate-
gories of shapes of P as separate cases, which first re-
quires an additional definition.

Definition 5.1. (Basic polyomino) A polyomino P
is said to be a basic polyomino if and only if for every
vector ~x modulo the polyomino grid for P , there exists
a system T containing only tiles with shape P such that
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T produces α and α contains a ~x-shifted polyomino.
Otherwise we call P non-basic.

Essentially, basic polyominoes are those which have
the potential to grow paths that place tiles at any and
all shift vectors relative to the grid.

Our proof consists of showing how to build bit-
reader gadgets for each of the following cases based on
the shape P :

(1) P has thickness 1 in one direction, i.e., it is an m×1
polyomino.

(2) P has thickness 2 in two directions, i.e., dx = dy =
2.

(3) P is basic and has thickness at least 3 in one and
at least 2 in the other direction.

(4) P is non-basic.

The Lemmas of Section 4 provide us with the basic
facilities to build paths of tiles which occupy particular
points while avoiding others. By carefully designing the
grids and offsets for the tiles of each polyomino P , we
are able to construct the constituent paths of the bit-
reading gadgets.

Let P be an arbitrary polyomino, with |P | ≥ 3.
Without loss of generality (as the following arguments
all hold up to rotation), let the bounding box of P
be of dimensions m × n, with m ≥ n, and dy be the
largest distance between two pixels of P in the same
column, and dx be the largest distance between two
pixels of P in the same row. For ease of notation, we
refer to the southernmost of all westernmost pixels of
P as p0 = (0, 0), and to all other pixels by their integer
coordinates.

For any polyomino P , we know that tiles of shape
P can produce a grid by Lemma 4.2; throughout this
section, we simply refer to this as the grid (for P ). We
also note that the grid for a given P may be slanted
as in Figure 5, and that the construction of the zig-zag
Turing machine is simply slanted accordingly. If we say
that a tile is ~v-shifted for some vector ~v, we mean that
it is off grid by the vector ~v.

For all figures in this section, we use the same color
conventions as in Figure 1. Thus, the green tiles in this
section represent the t tile; as discussed in the caption
of the figure, the yellow and blue tiles represent the
two potential paths grown from t, while the dark grey
tiles represent tiles that prevent the growth of paths
from t. We refer to these grey tiles as blockers. We
use the convention that if a path of yellow polyominoes
grows, then a 0 is being read. Similarly, if a path
of blue polyominoes grows, then a 1 is being read.

Consequently, we call polyominoes that prevent the
growth of the blue path 1-blockers and polyominoes
that prevent the growth of the yellow path 0-blockers.
In addition, tiles of the same color are numbered in
order to indicate the order of their placement where the
higher numbered tiles are placed later in the assembly
sequence.

5.1 Case (1): P Is an m × 1 Polyomino If P is
a straight line, and therefore n = 1, we can simply
use a scheme as illustrated in Figure 8. In Figure 8a,
a 0 bit is read as indicated by the placement of the
yellow polyomino. Notice that the tile labeled 3 in
Figure 8a prevents the attachment of the blue-colored
tile. After the yellow tile attaches, a fuchsia tile attaches
as shown in the figure which allows for growth to
continue. Figure 8b shows a similar scenario in the case
that a 1 is read. The key property of this bit reader
is that the yellow and blue tiles have different offsets
relative to the green tile, which is always possible if P
is a line of length ≥ 3. Note that the bit reader shown in
Figure 8 is a left-to-right bit-reading gadget. A right-to-
left bit-reading gadget can be constructed in a similar
fashion.

1 1
3

4
6
57 12

1
1

1

(a) A left-to-right bit-reading gadget reading a 0 bit.

1 1
3
46

7
1

2
5

8
9

1
1
1

(b) A left-to-right bit-reading gadget reading a 1 bit.

Figure 8: The two different bit-reading schemes for an
m×1 polyomino. Note that the bit reader in this figure
proceeds from left to right.

The case for any P which is an n×1 straight line can
be handled in the same way. Thus, we now only need to
consider the cases m ≥ n ≥ 2. Because P is connected,
this implies both dx ≥ 2 and dy ≥ 2. Furthermore, we
assume the that the grid constructed from Lemma 4.2
using P is created by attaching the southernmost pixel
on the eastern edge of P to the northernmost pixel on
the western side of the P , as suggested by Figure 5.

5.2 Case (2): P Is Such That dx = dy = 2
Before describing bit-reading constructions, we analyze
the possible cases for the shape of P ; refer to Figure 9.
Also, we note that dx = dy = 2 implies that P is basic.

First consider the situation in which |P | is even.
If both (1, 0) and (0, 1) belong to P , the assumption
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dx = dy = 2 implies that (1, 1) must also belong to
P , but no further pixels. Thus, P is a 2 × 2-square,
which will be treated as Case (2a). Now, without loss
of generality consider the case that (0, 1) belongs to P ,
but (1, 0) does not. It follows from dx = dy = 2 that
(1, 1) belongs to P , as well as (1, 2). This conclusion can
be repeated until all pixels of P are allocated. It follows
that P is an even zig-zagging shape. This is shown as
Case (2b) in Figure 9.

Now consider the case in which |P | is odd. If both
(1, 0) and (0, 1) belong to P , (1, 1) cannot be part of
P , and P is an L-shape consisting of three pixels. If
without loss of generality (0, 1) belongs to P , but (1, 0)
does not, we can conclude analogous to (2a) that P is an
odd zig-zagging shape, shown as Case (2c) in Figure 9;
this also comprises the case of an L-shape with three
pixels.

(2a) (2b) (2c)

Figure 9: The possible shapes in Case (2), when dx =
dy = 2.

Now we sketch the bit-reading schemes. As these
cases are relatively straightforward, we simply refer to
the corresponding figures. Note that the logic of the
arrangement is color coded: the first polyomino we add
to our tile set is the green polyomino along with the
blue and yellow polyominoes that allow for an blue tile
to attach to the east of it in an on grid position and a
yellow tile to attach to the east of it shifted (−1,−1)
relative to the polyomino grid.

5.2.1 Case (2a) If P is a 2 × 2 square we use the
scheme shown in Figure 10.

1 1
12

345
67 1

21 1

(a) A left-to-right bit reader
reading a “0” bit.

1 1
1234

1
1
2
1

(b) A left-to-right bit reader
reading a “1” bit.

Figure 10: A general bit-reading scheme for a left-to-
right bit reader in case (2a), in which P is a 2×2 square.

5.2.2 Case (2b) If P is an even zig-zagging poly-
omino, as shown in part (2b) of Figure 9, we use the
bit-reading schemes shown in Figure 11.

1
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5

6
7

1

1 2

1
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(a) (b)
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6

7

8

1

2
3

1

2

1

3
4

5

6

7

1
2

1

(c) (d)

Figure 11: The bit-reading schemes for Case (2b) of
Figure 9.

5.2.3 Case (2c) If P is an odd zig-zagging poly-
omino, as shown in part (2c) of Figure 9, we use the
bit-reading schemes shown in Figure 12.

This concludes Case (2).

5.3 Case (3): P Is Basic And Not In Case (1)
or (2) We now describe how to construct a system
that contains a bit-reading gadget in the case that
max{dx, dy} ≥ 3, min{dx, dy} ≥ 2, and P is a basic
polyomino. This means that it is possible to construct
a path using tiles of shape P which place a tile at any
possible offset in relation to the grid. We will use this
ability to place blockers and bit-reader paths exactly
where we need them, with those locations specified
throughout the description of this case. Without loss
of generality, assume that max{dx, dy} = dy.

Case (3) Overview A schematic diagram showing
the growth of the bit-reading gadget system we con-
struct is shown in Figure 13. Note that the figure depicts
what the bit-reader would look like if the grid formed
by P was a square grid. In cases of a slanted grid (such
as that shown in Figure 5), the bit-gadgets would be
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Figure 12: The bit-reading schemes for Case (2c) of
Figure 9.

correspondingly slanted. Growth of the system begins
with the seed as shown in Figure 13. From the seed, the
system grows a path of tiles west (shown as a light grey
path in the figure) to which one of the two bit writers
attach (shown as dark grey in the figure). Once one of
the bit writers assembles, growth proceeds as shown in
the schematic view until the other bit writers assem-
ble. Then growth continues upward to the next level
(i.e. the seed row can be considered a “zig” row and
the next row a “zag” row of the zig-zag Turing machine
simulation) as shown in the figure until a green tile is
placed. Depending on the bit writer gadget to the east
of the green tile either a yellow path of tiles grows, indi-
cating that a 0 has been read (as shown in the schematic
view with the westernmost bit writer), or a blue path
of tiles grows, indicating that a 1 has been read (as
shown in the schematic view with the easternmost bit
writer). Henceforth, we refer to the system described
by the schematic view in Figure 13 as the bit-reading
gadget.

The light grey tiles that compose the bit-reading
gadget are easily constructed by placing glues on the
polyomino P so that they grow the paths shown in
Figure 13 (again, modulo the slant of the particular
grid formed by P ), which are on grid with the seed,
where the grid is formed following the technique used in
the proof of Lemma 4.2. The construction of the other
tiles is now described. The green tile is constructed by
placing a glue on its western side so that it attaches
to the grey tiles on grid as shown in the schematic

s

Figure 13: A schematic diagram showing the growth
of the bit-reading gadget system for Case (3). Note
that in the actual construction, a larger gap would exist
between the two bit-readers to allow the path between
them to first extend upward and create the necessary
bit-writer, then come back down and continue growth
of the next bit-reader.

view. Furthermore, glues are placed on the green tile
and the first blue tile so that the blue tile attaches to
the green tile in an on-grid manner. Glues are placed
on the green tile and the first yellow tile so that the
southern edge of the southernmost pixel on the east
perimeter of the green tile attaches to the northern edge
of the northernmost pixel on the western perimeter of
the yellow tile (thus putting the yellow tile off grid).

Case (3) Bit-Writer Construction First we de-
scribe the construction of the bit-writer subassemblies
of the bit-reading gadget by describing the placement
of the blockers in relation to the position of the green
tile. We will discuss how to create tile sets which can
create the necessary sets of paths for the gadgets, and
then the final tile set will simply consist of a union of
those tile sets. Suppose that the 0-blocker is a ~x1-shifted
polyomino and the 1-blocker is a ~x2-shifted polyomino.
(Recall that P is a basic polyomino, and thus it is pos-
sible to build a path such that a blocker can be at any
shift relative to the grid.) We construct two separate
systems, say T0B and T1B as described in Lemma 4.6
so that the 0-blocker and 1-blocker, respectively, are
the northernmost tiles on the western edges of the as-
semblies (shown in part (a) and (b) of Figure 14). We
denote the assemblies produced by these systems as α0

and α1, respectively. Next, extend the tile sets of the
systems if needed so that the last tiles placed lie on grid
in the same grid row as the seed as shown in part (c) and
(d) of Figure 14. In addition, extend the tile sets of the
two systems (if needed) so that the last tile placed has
pixels that lie in the same column as the westernmost
pixel in the blocker or to the west of that column. This
is shown schematically in part (e) and (f) of the figure.
Now, place the green polyomino so that its bounding
rectangle’s southwest corner lies at the origin, and place
the assemblies α0 and α1 constructed above so that the
1-blocker and 0-blocker lie relative to the green tile as
described above (shown in part (g) of Figure 14). With-
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 14: A schematic representation of the construc-
tion of the bit writers. The blockers are represented by
dark grey squares in the northwest of the assemblies.
The assembly which places the 0-blocker begins growth
from the blue tile and the assembly which places the
1-blocker begins growth from the yellow tile. The last
tile placed in the assembly that contains the 0-blocker
is shown in blue and the last tile placed by the assembly
containing the 1-blocker is shown in red. Paths of new
tiles that are added at each step are dark grey.

out loss of generality suppose that the seed of α1 lies to
the southeast of the seed of α0 (as is the case in the
figure). Then we can extend the tile set of T0B so that
whenever α1 is placed as described above, the seeds of
α0 and α1 lie at the same position, since both paths
are on grid in those locations. In addition, without loss
of generality suppose that the tile placed last in α1 is
further west than the last tile placed in α0. Then we
extend the tile set of T0B so that the last tile placed in
α0 is at the same position as the last tile placed in α1.
These two steps are shown in part (h) of the figure. The
construction of the bit writer gadgets is now complete
and the schematic diagram of the completed bit writers
is shown in parts (i) and (j) of Figure 14.

(a) The green tile is on grid
and the yellow tile is (−1,−1)-
shifted.

(b) The 0-blocker is placed so that the east-
ernmost pixel on the north perimeter of the
0-blocker overlaps the westernmost pixel on
the south perimeter of the yellow tile.

Figure 15: Placement of the 0-blocker, which blocks the
yellow (i.e. 0-reader) path.

Case (3) Bit-Reader Construction Figures 15 and
16 show the placement of the 0-blocker and 1-blocker,
respectively. Figure 17 shows how the glues are placed
on the first and second tiles in the yellow path (in the
figure the second yellow tile is shown as an orange tile
for clarity) so that the second yellow tile binds to the
first yellow tile in the system. In part (a) of Figure 17,
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(a) The green tile and blue tile
are both on grid.

(b) The 1-blocker is placed so that the north-
ernmost pixel on the western perimeter of the
1-blocker overlaps the southernmost pixel on
the east perimeter of the blue tile.

Figure 16: Placement of the 1-blocker, which blocks the
blue (i.e. 1-reader) path.

an orange tile (representing the second tile to attach in
the yellow path) is placed so that it now lays directly
on top of the yellow tile. The dy pixels which lie in the
column with the most pixels are shown as a red column
in part (b) of the figure. Notice that when the orange
tile is translated by the vector (1, 0) the m red pixels on
the yellow tile now lay adjacent to the m red pixels on
the orange tile (see part (c)). Now, we shift the orange
tile by the vector (0, 2) and make two observations: (1)
the bounding rectangle of the orange tile now no longer
overlaps the bounding rectangle of the grey tile, (2) the
orange tile has a pixel which lies adjacent to a pixel in
the yellow tile and/or a pixel which overlaps a pixel in
the yellow tile as shown in part (d) of the figure. In the
case that the orange tile contains pixels which overlap
pixels in the yellow tile, we translate the orange tile to
the north until no pixels overlap, but pixels lie adjacent
to each in the two tile (shown in part (e) of the figure).

We now have a configuration as shown in part (f) of
Figure 17 in which there are not any overlapping pixels
and the yellow and orange tiles have pixels which lie
adjacent to each other. We can now place glues on the
green, yellow and orange tiles so that they assemble as

shown with the yellow tile attaching to the green tile
and the orange tile attaching to the yellow tile.

2 2 2

(a) (b) (c)

2 2

2

(d) (e) (f)

Figure 17: The steps involved in placing the grey blocker
and yellow tiles so that an blue tile is prevented from
binding to the green tile, but allows for a yellow tile
to bind to the green and then continue growth of the
yellow path on the grid. The orange tile represents
the second tile of the yellow path (to make it easier
to distinguish), and figures (a) through (e) show how it
can be initially placed immediately on top of the first
yellow tile, and then moved into a position which allows
for correct binding.

We now describe how glues are placed on the first
and second tiles to assemble in the path of blue-colored
tiles. Figure 18a shows how the 0-blocker lies in relation
to the blue and green tiles. Notice that a tile can attach
to the north of the blue tile without overlapping any
pixels on other tiles. Thus, the second tile to attach in
the blue path is placed to the north of the first blue tile
in the path such that it is on the grid. This is shown in
Figure 18b where we use a purple tile to represent the
second tile in the blue path for clarity. Consequently,
we place glues on the first and second tiles to attach in
the blue path in a manner such that the second tile in
the path binds on grid with respect to the first tile.

Case (3) Right-to-Left Bit-Reading Gadget Con-
struction As the above sections describe how to build
the left-to-right bit-reading gadget, we now construct
the right-to-left bit-reading gadget by using mirrored
versions of the arguments given above with a few small
changes. In the left-to-right bit-reading gadget we can
always place the yellow tile so that it is a (−1,−1)-
shifted polyomino. Notice that this is not the case when
the bit reader is growing to the west. Thus we make
the following changes to the argument above when con-
structing the right-to-left bit-reading gadget. For con-
venience, we call the first tile to attach in the blue path

160 Copyright © 2015.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d 

10
/1

9/
20

 to
 6

8.
20

1.
17

9.
17

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



(a) The green tile is on grid and the yellow
tile is (−1,−1)-shifted.

(b) The 0-blocker is placed so that the west-
ernmost pixel on the north perimeter of the
0-blocker overlaps the easternmost pixel on
the south perimeter of the yellow tile.

Figure 18: Placement of the second tile in the blue path
(shown as purple to make it easier to distinguish).

t1 and the first tile to attach in the yellow path t0. To
begin, we attach t1 to the green tile so that the north-
ernmost pixel on the east perimeter of t1 attaches to
the southernmost pixel on the western perimeter of the
green tile via their east/west glues. Say that this places
the blue tile so that it is an (x1, x2)-shifted polyomino.
Note that this means t1 is not necessarily on grid since
as noted above the grid we are using is formed by at-
taching the southernmost pixel on the east perimeter of
P to the northernmost pixel on the western perimeter
of P . Now, observe that this implies that we can also
attach a (x1 + 1, x2−1)-shifted tile to the green tile (by
the points that we used for their attachment at (x1, x2)).
We thus construct glues so that t0 attaches to the green
tile such that it is a (x1 + 1, x2 − 1)-shifted polyomino.
Now, we can construct the bit-writers as in Section 5.3
with the blockers shifted in the following ways: (1) the
1-blocker is shifted so that when it is placed its north-
ernmost pixel on the east perimeter overlaps the south-

ernmost pixel on the western perimeter of t1, and (2)
the 0-blocker is placed so that its easternmost pixel on
its north perimeter overlaps the westernmost pixel on
the south perimeter of t0. We can then use the mir-
rored version of the construction in section 5.3 to grow
the rest of the path of tiles composing the yellow and
blue paths.

Case (3) Correctness of the Bit-Reading Gadget

Let us now examine what our constructed system
will assemble. Growth will start with the seed and then
grow two bit-writer subassemblies consecutively. For
concreteness, suppose that α1 is grown first and then
α0. After α0 is assembled, a path of tiles will grow
upward and over to place a green tile such that the
green tile will be placed with its position relative to the
grey tile as shown in part (a) of Figure 17. It then
follows by the way we placed the green and yellow tiles
and the location of α0 that the yellow path will be able
to assemble. This will eventually lead to the placement
of the second green tile, which is placed to the west of
the second bit writer. The relative placements of that
green tile and the blocker of α1 ensure that a blue path,
and only a blue path, will assemble. This concludes the
necessary demonstration of the correct growth of a bit-
reader gadget. (The full Turing machine simulation also
includes bit-writers, designed as previously described,
to output between bit-readers and the necessary zig-zag
paths.) �

5.4 Case (4): P is non-basic For this case, suppose
that P is a non-basic polyomino. Note that we are not
making the claim that non-basic polyominoes exist; in
fact we conjecture that they do not. However, a proof
seems at least as complicated as handling this case with
an explicit construction. Details are omitted because
of limited space; for details, see the full version of this
paper [9].

6 Computationally Limited Systems

In this section, we provide a set of results which sug-
gest that some systems of polyominoes are incapable of
universal computation by showing that they are either
unable to utilize bit-reading gadgets (which are funda-
mental features of all known computational tile assem-
bly systems), or that they can be simulated by standard
aTAM temperature-1 systems (which are conjectured to
be incapable of universal computation), and are thus no
more powerful than them.

6.1 Monomino and Domino Systems Cannot
Read Bits

161 Copyright © 2015.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d 

10
/1

9/
20

 to
 6

8.
20

1.
17

9.
17

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



Theorem 6.1. There exists no temperature 1
monomino system (a.k.a. aTAM temperature-1
system) T such that a bit-reading gadget exists for T .

Proof. We prove Theorem 6.1 by contradiction. There-
fore, assume that there exists an aTAM system T =
(T, σ, 1) such that T has a bit-reading gadget. (With-
out loss of generality, assume that the bit-reading gad-
get reads from right to left and has the same orientation
as in Definition 3.1.) Let (tx, ty) be the coordinate of
the tile t from which the bit-reading paths originate (re-
call that it is the same coordinate regardless of whether
or not a 0 or a 1 is to be read from α0 or α1, respec-
tively). By Definition 3.1, it must be the case that if
α0 is the only portion of α in the first quadrant to the
left of t, then at least one path can grow from t to even-
tually place a tile from T0 at x = 0 (without placing
a tile below y = 0 or to the right of (tx − 1). We will
define the set P0 as the set of all such paths which can
possibly grow. Analogously, we will define the set of
paths, P1, as those which can grow in the presence of
α1 and place a tile of a type in T1 at x = 0. Note that
by Definition 3.1, neither P0 nor P1 can be empty.

Since all paths in P0 and P1 begin growth from t at
(tx, ty) and must always be to the left of t, at least the
first tile of each must be placed in location (tx − 1, y).
We now consider a system where t is placed at (tx, ty)
and is the only tile in the plane (i.e. neither α0 nor
α1 exist to potentially block paths), and will inspect
all paths in P0 and P1 in parallel. If all paths follow
exactly the same sequence of locations (i.e. they overlap
completely) all the way to the first location where they
place a tile at x = 0, we will select one that places
a tile from T0 as its first at x = 0 and call this path
p0, and one which places a tile from T1 as its first at
x = 0 and call it p1. This situation will then be handled
in Case (1) below. In the case where all paths do not
occupy the exact same locations, then there must be
one or more locations where paths branch. Since all
paths begin from the same location, we move along
them from t in parallel, one tile at a time, until the first
location where some path, or subset of paths, diverge.
At this point, we continue following only the path(s)
which take the clockwise-most branch. We continue in
this manner, taking only clockwise-most branches and
discarding other paths, until reaching the location of the
first tile at x = 0. (Figure 19 shows an example of this
process.) We now check to see which type(s) of tiles can
be placed there, based on the path(s) which we are still
following. We again note that by Definition 3.1, some
path must make it this far, and must place a tile of a
type either in T0 or T1 there. If there is more than one
path remaining, since they have all followed exactly the
same sequence of locations, we randomly select one and

call it p′. If there is only one, call it p′. Without loss
of generality, assume that p′ can place a tile from T0 at
that location. This puts us in Case (2) below.

y

x

t

p'

Figure 19: Example sets P0 and P1, with p′ traced
with a red line. Red squares represent branching
points of paths, gold squares represent overlapping
points of different branches.

y

x

t

α1

blocked by p'

Figure 20: An example of the growth of p′ (traced
with a red line) blocked by α1. By first letting
as much of p′ grow as possible, it is guaranteed
that all other paths must be blocked from reaching
x = 0.

Case (1) Paths p0 and p1 occupy the exact same
locations through all tile positions and their placement
of their first tiles at x = 0. Also, there are no other paths
which can grow from t, so, since by Definition 3.1 some
path must be able to complete growth in the presence
of α0, either must be able to. Therefore, we place α0

appropriately and select an assembly sequence in which
p1 grows, placing a tile from T1 as its first at x = 0.
This is a contradiction, so Case (1) cannot be true.

Case (2) We now consider the scenario where α1 has
been placed as the bit-writer according to Definition 3.1,
and with t at (tx, ty). Note that path p′ must now
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always, in any valid assembly sequence, be prevented
from growing to x = 0 since it places a tile from T0 at
x = 0, while some path from T1 must always succeed.
We use the geometry of the paths of T1 and path p′ to
analyze possible assembly sequences.

We create a (valid) assembly sequence which at-
tempts to first grow only p′ from t (i.e. it places no
tiles from any other branch). If p′ reaches x = 0, then
this is not a valid bit-reader and thus a contradiction.
Therefore, p′ must not be able to reach x = 0, and since
the only way to stop it is for some location along p′

to be already occupied by a tile, then some tile of α1

must occupy such a location. This means that we can
extend our assembly sequence to include the placement
of every tile along p′ up to the first tile of p′ occupied
by α1, and note that by the definition of a connected
path of unit square tiles in the grid graph, that means
that some tile of p′ has a side adjacent to some tile of
α1. At this point, we can allow any paths from P1 to
attempt to grow. However, by our choice of p′, as the
“outermost” path due to always taking the clockwise-
most branches, any path in P1 (and also any other path
in P0 for that matter) must be surrounded in the plane
by p′, α1, and the lines y = 0 and x = tx (which they
are not allowed to grow beyond). (An example can be
seen in Figure 20.) Therefore, no path from P1 can
grow to a location where x = 0 without colliding with
a previously placed tile or violating the constraints of
Definition 3.1. (This situation is analogous to a pre-
maturely aborted computation which terminates in the
middle of computational step.) This is a contradiction
that this is a bit-reader, and thus none must exist.

Theorem 6.2. There exists no single shape polyomino
tile system Γ = (T, σ, 1) where all tiles of T consist of
either two unit squares arranged in a vertical bar, or
of two unit squares arranged in a horizontal bar (i.e.
vertical or horizontal duples), such that a bit-reading
gadget exists for Γ.

Proof. The proof of Theorem 6.2 is nearly identical to
that of Theorem 6.1. Without loss of generality, we
prove the impossibility of a bit-reader with horizontally
oriented duples. The only differing point to consider
between the proof for squares vs. duples is in the
analysis of Case (2) where the claim is made that if p′ is
blocked by α1, some tile of p′ must have a side adjacent
to some tile of α1. In the case of duples, as can be seen
in Figure 21, there are also the possibilities that tiles
of p′ and α1 are diagonally adjacent or separated by a
gap of a single unit square. However, neither of these
possibilities can allow for duples of any path in P1 to
pass through, and they therefore remain blocked, thus
again proving that no bit-reader must exist.

Figure 21: (Right) Partial paths of duples growing from
right to left, (Left) portions of those paths being blocked
by grey tiles. Any possible way of blocking a path of
duples results in either (1) no gap between the path and
the blocking assembly, or (2) a single unit square gap,
which no path of only horizontally oriented duples can
pass through.

It is interesting to note that by the addition of
a single extra square to a duple, creating a 3 × 1
polyomino, it is possible to create gaps between blocking
assemblies and blocked paths which allow another path
to pass through. This is because the gap can be
diagonally displaced from the last tile of the blocked
path. An example can be seen in Figure 8.

6.2 Scale-Free Simulation We now provide a defi-
nition which captures what it means for one polyomino
system to simulate another. This definition is meant
to capture a very simple notion of simulation in which
the simulating system follows the assembly sequences of
the simulated system via a simple mapping of tile types
and with no scale factor (as opposed to more complex
notions of simulation which allow for scaled simulations
such as in [4, 5, 12,17], for instance).

Definition 6.1. (Scale-free simulation) A tile
system T = (T, σ, τ) is said to scale-free simulate a
tile system T ′ = (T ′, σ′, τ ′) if there exists a surjec-
tive function f : T → T ′ and a bijective function
M : A[T ] → A[T ′] such that the following properties
hold.

1. For A,A′ ∈ A[T ], A →T1 A′ via the addition of
tile t ∈ T if and only if M(A) →T ′

1 M(A′) via the
addition of a tile in the preimage f−1[t].
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2. Any sequence (A1 = σ, . . . , Ak) is an assem-
bly sequence for T if and only if (M(σ) =
σ′, . . . ,M(Ak)) is an assembly sequence for T ′.

(a) (b)

x x

Figure 22: (a) Case (1) considers the scenario in which a
4-position limited polyomino with uniquely paired glues
does not have overlapping neighboring positions, or an
overlapping diagonal neighbor, and can therefore form
a 2D lattice. (b) In case (2), neighbor positions are
mutually exclusive. In this case the assembly is linear
and is scale-free simulated by a linear monomino tile
system with a quadratic increase in tile types to account
for the non-determinism introduced by the choice of glue
positions.

6.3 Polyominoes with Limited Glue Positions
In this section we analyze the potential of polyomino
systems to compute if the number of distinct positions
on the polyominoes at which glues may be placed
is bounded. We show that any polyomino system
which utilizes 3 or fewer distinct glue locations, or a
system that uses 4 glue locations but adheres to a
“unique pairing” constraint, is scale-free simulated by
a temperature 1 aTAM system (Theorems 6.3, 6.4),
and is thus very likely to be incapable of universal
computation. On the other hand, we show that with
only 4 glue positions and no unique pairing restriction,
universal computation is possible (Theorem 6.5).

Definition 6.2. (c-position limited) Consider a
set T of polyomino tiles all of some shape polyomino P .
Consider the subset S of all edges of P such that some
t ∈ T places a glue label on a side in S. We say that
T has glue locations S. If c ≥ |S|, we say that T is
c-position limited. Further, any single shape polyomino
system T = (T, σ, τ) is said to be c-position limited if
T is c-position limited.

Definition 6.3. (uniquely paired) A polyomino
system with glue locations S is said to be uniquely
paired if for each s ∈ S, there is a unique s′ ∈ S such
that glues in position s can only bind with glues in
position s′.

Monomino systems, for example, are uniquely
paired as the north face glue position only binds with

the south face position, and the east position only binds
with the west position.

Theorem 6.3. Any 3-position limited polyomino sys-
tem Γ = (T, σ, 1) is scale-free simulated by a monomino
tile system (a.k.a. a temperature 1 aTAM system).

Proof. If the system is 2-position limited, a monomino
system that replaces each t ∈ T with a linear east/west
glue monomino tile (i.e. a tile which only has glues on its
west and east sides) will do the trick. (Note that Lemma
3 of [3] implies that if the glue positions on a polyomino
are sufficient to allow it to bind, without overlap, in
some position to another copy of itself, then an infinite
sequence of copies can bind in a line at the same relative
positions to their neighbors.) In the case of a 3-position
limited system, the construction described for 4-position
limited uniquely paired systems with a quadratic tile
complexity increase (see the proof of Theorem 6.4) may
be applied.

Theorem 6.4. Any 4-position limited, uniquely paired
polyomino system Γ = (T, σ, 1) is scale-free simulated
by a monomino tile system at temperature 1 (a.k.a. a
temperature 1 aTAM system).

Proof. Consider some 4-position limited, uniquely
paired system Γ = (T, σ, 1), and denote the shape of
the tiles in Γ as polyomino P . Let ~v denote the trans-
lation difference between two bonded polyominoes from
T that are bonded with the first pair of glue positions,
and let ~u denote the translation for the second pair of
bonding positions. As an example, consider the poly-
omino of Figure 22(a). The north-south glue positions
are separated by vector ~u = (3, 5), and the east-west
glue positions are separated by vector ~v = (6, 1). To
show that Γ is simulated by some monomino system,
we consider two cases. For polyomino P , let P~x denote
the polyomino obtained by translating P by some vec-
tor ~x. For case 1, we assume P , P~v, P~u, and P~v+~u are
mutually non-overlapping. For case 2, we assume that
either P~v and P~u overlap, or that P~v and P−~u overlap
(note that P overlaps P~u+~v if and only if P~v overlaps
P−~u, and thus is covered by case 2.) The two cases are
depicted in Figure 22.

Case 1: In this scenario, the tiles of Γ grow in
a 2D lattice with basis vectors ~u and ~v and can be
simulated by a monomino system that simply creates
a square monomino tile for each element of t ∈ T ,
placing the glue types of the first pair of uniquely
paired glues of t on the north and south edges of the
representing monomino, and the other pair on the east
and west edges. The bijective mapping that satisfies the
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Figure 23: The following bit-reading gadget demon-
strates how a 1× 4 polyomino that uses only 4 distinct
glue positions can perform universal computation. Due
to the asymmetry of the glue locations on the east and
west edges of the polyomino, the right-to-left and left-
to-right bit reading gadgets are also asymmetric. Geo-
metric bit reading is not possible with fewer than 4 glue
positions, and is not possible with only 4 positions and
unique pairing of positions.

scale-free simulation requirement simply replaces each t
in a producible assembly of Γ with the corresponding
monomino for that t, thereby yielding an appropriate
assembly over the unit square tiles.

Case 2: Without loss of generality, assume it is the
case that P~v and P~u overlap. We first observe that
growth in this scenario is linear (see Figure 22). We
will simulate Γ with a linear east/west monomino tile
system (i.e. a system where tiles have glues only on
their west and east sides). However, unlike in case 1,
a simple tile for tile replacement is not sufficient as
this does not allow for the simulation of the potential
non-deterministic placement of one of two mutually
overlapping tiles. To deal with this, we increase the tile
set size by a quadratic factor. Let ~u and ~v be defined
as before for case 1. As a first subcase, assume that the
system we are interested in simulating is such that no
polyomino is attachable to the seed at translation ~−u or
~−v from the seed, i.e., tiles only attach at positive linear

combinations of ~u and ~v. With this restriction, the 4
glue positions of the tiles can be thought of as 2 input
positions and 2 output positions, where a tile always
attaches based on the binding of a glue on an input side.
Let gin1 and gin2 represent the two input positions, and
gout1 and gout2 the two output positions, where gin1 is
uniquely paired with gout1, and gin2 with gout2. Then,
for a tile t ∈ T and d ∈ {in1, in2, out1, out2}, let gd(t)
be the glue label at location d on tile t. To simulate
Γ, we generate a set T ′ of at most 2|G| east/west
monomino tiles (where G is the set of all glue labels of
the polyomino tile set T ), and we will specify the east
glue position as ge and the west as gw for tiles in T ′ (and
we’ll treat gw as the input and ge as the output sides).
For 0 ≤ i < |T |, we generate a set T ′i of tiles from tile
ti ∈ T as follows. Let a = gin1(ti) and b = gin2(ti). For
every tile t′ ∈ T such that gout1(t′) = a, we generate tile
t′′ ∈ T ′i such that gw(t′′) = a·gout2(t′) (where a·gout2(t′)
is just the concatenation of the labels of glues a and
gout2(t′)), and ge(t

′′) = gout1(ti) · gout2(ti). Similarly,
for every every tile t′ ∈ T such that gout2(t′) = b, we
generate tile t′′ ∈ T ′i such that gw(t′′) = gout1(t′) ·b, and
ge(t

′′) = gout1(ti) · gout2(ti). Essentially, whenever a tile
from T ′ is placed, it presents on its output side both of
the output glues of the tile from T that it was designed
to simulate. (This is because in Γ, either of those output
glues could be used as an input glue to bind the next
tile, but only one of them.) Therefore, any tile wishing
to use one of those output glues as an input glue must
now have a glue label which matches the concatenation
of that glue and any other which may have been paired
with it as an output. In such a way, we generate each

set T ′i to simulate ti ∈ T , and T ′ =
⋃<|T |

i=0 T ′i . Therefore,
for our scale-free simulator Γ′ = (T ′, σ′, 1) the function
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f defined for the scale-free simulation simply maps each
tile in T ′i ⊆ T ′ to its corresponding ti ∈ T and σ′ is
simply formed by corresponding tiles between T and
T ′.

The bijection from producible assemblies A[Γ] and
those in A[Γ′] is defined as follows. Consider some
assembly A ∈ A[Γ]. Starting from the seed, for each
tile attaching in sequence, attach a corresponding tile
in T ′ to the seed of Γ′. In particular, if tile t with input
glues a and b attaches via glue a in Γ, then attach a
tile from t′ ∈ T ′ with glue label “a · i” where i matches
the unused output glue label of the tile that t attached
to, and the output glue of t′ is the concatenation of
the output glues of t. Similarly define the simulator
tile attachment in the case that glue b is the bonding
glue. By repeating this process, an element of A[Γ′] is
generated for any element of A[Γ], and this mapping is
bijective and thus provides a scale-free simulation of the
input system Γ with at most quadratic increase in tile
complexity.

Finally, it is easy to see that the restriction that
the seed only grows in direction ~u or ~v (and not ~−u
or ~−v) can easily be removed by taking a more general
system and first doubling it’s tile set so that each tile
type only every attaches in a ~u/~v or ~−u/ ~−v direction.
The simulation system is then constructed with two
symmetric applications of the previous construction.

Theorem 6.5. There exist 4-position limited polyTAM
systems that are computationally universal at tempera-
ture 1.

Proof. We prove this by providing constructions for
right-to-left and left-to-right bit reading gadgets for the
1×4 polyomino that uses only 4 unique glues positions.
The details of the bit reading gadgets are presented
in Figure 23. It is straightforward to connect the bit
reading gadgets in a fashion similar to previous results
to construct a zig-zag Turing machine simulation.

7 Multiple Polyomino Systems

In previous sections we have focussed on the computa-
tional power of systems consisting of singly shaped poly-
ominoes and showed that single polyomino systems are
universal for polyominoes of size ≥ 3, while monomino
and domino systems are likely not capable of such com-
putation. We now show that any multiple shape poly-
omino system (i.e. one that utilizes at least 2 distinct
polyomino shapes, regardless of their size) is capable of
universal computation.

Lemma 7.1. For every standard Turing Machine M
and input w, there exists a TAS with τ = 1 consisting
only of tiles shaped as dominoes, 2 × 1 and 1 × 2
polyominoes, that simulates M on w.

Proof. To see this we provide a sketch of a right-to-
left bit reading gadget in Figure 24. A left-to-right
gadget can be derived similarly, and together these
gadgets can be used to construct a zig-zag Turing
machine simulation in the same manner as with previous
constructions in this paper.

2

1

3

4

2

1

3

4

2 1

3

2
1

3

read right-to-left
Figure 24: A 2-shape system consisting of the two
distinct domino polyominoes can be designed to read
bits for the simulation of a zig-zag Turing machine.

Theorem 7.1. For every standard Turing Machine M
and input w, and any 2 distinct polyominoes P and Q,
there exists a TAS with τ = 1 consisting only of tiles
shaped as P or Q that simulates M on w.

Proof. If either P or Q are size 3 or larger, we get
the result from theorem 5.1. If one polyomino is a
monomino and the other a domino, we get the result
from the paper [12]. Finally, if P and Q are the
two distinct domino shapes, then we get the result by
Lemma 7.1.
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