61 research outputs found

    Maggot secretions suppress pro-inflammatory responses of human monocytes through elevation of cyclic AMP

    Get PDF
    AIMS/HYPOTHESIS: Maggots of the blowfly Lucilia sericata are used for the treatment of chronic wounds. As monocytes may contribute to the excessive inflammatory responses in such wounds, this study focussed on the effects of maggot secretions on the pro-inflammatory activities of these cells. METHODS: Freshly isolated monocytes were incubated with a range of secretions for 1 h and then stimulated with lipopolysaccharides (range 0-100 ng/ml) or lipoteichoic acid (range 0-5 microg/ml) for 18 h. The expression of cell surface molecules, cytokine and chemokine levels in culture supernatants, cell viability, chemotaxis, and phagocytosis and killing of Staphylococcus aureus were measured. RESULTS: Maggot secretions dose-dependently inhibited production of the pro-inflammatory cytokines TNF-alpha, IL-12p40 and macrophage migration inhibitory factor by lipopolysaccharides- and lipoteichoic acid-stimulated monocytes, while enhancing production of the anti-inflammatory cytokine IL-10. Expression of cell surface receptors involved in pathogen recognition remained unaffected by secretions. In addition, maggot secretions altered the chemokine profile of monocytes by downregulating macrophage inflammatory protein-1beta and upregulating monocyte chemoattractant protein-1 and IL-8. Nevertheless, chemotactic responses of monocytes were inhibited by secretions. Furthermore, maggot secretions did not affect phagocytosis and intracellular killing of S. aureus by human monocytes. Finally, secretions induced a transient rise in the intracellular cyclic AMP concentration in monocytes and Rp-cyclic AMPS inhibited the effects of secretions. CONCLUSIONS/INTERPRETATION: Maggot secretions inhibit the pro-inflammatory responses of human monocytes through a cyclic AMP-dependent mechanism. Regulation of the inflammatory processes by maggots contributes to their beneficial effects on chronic wound

    An in vitro collagen perfusion wound biofilm model; with applications for antimicrobial studies and microbial metabolomics

    Get PDF
    BackgroundThe majority of in vitro studies of medically relevant biofilms involve the development of biofilm on an inanimate solid surface. However, infection in vivo consists of biofilm growth on, or suspended within, the semi-solid matrix of the tissue, whereby current models do not effectively simulate the nature of the in vivo environment. This paper describes development of an in vitro method for culturing wound associated microorganisms in a system that combines a semi-solid collagen gel matrix with continuous flow of simulated wound fluid. This enables culture of wound associated reproducible steady state biofilms under conditions that more closely simulate the dynamic wound environment. To demonstrate the use of this model the antimicrobial kinetics of ceftazidime, against both mature and developing Pseudomonas aeruginosa biofilms, was assessed. In addition, we have shown the potential application of this model system for investigating microbial metabolomics by employing selected ion flow tube mass spectrometry (SIFT-MS) to monitor ammonia and hydrogen cyanide production by Pseudomonas aeruginosa biofilms in real-time. ResultsThe collagen wound biofilm model facilitates growth of steady-state reproducible Pseudomonas aeruginosa biofilms under wound like conditions. A maximum biofilm density of 1010 cfu slide-1 was achieved by 30 hours of continuous culture and maintained throughout the remainder of the experiment. Treatment with ceftazidime at a clinically relevant dose resulted in a 1.2 – 1.6 log reduction in biofilm density at 72 hours compared to untreated controls. Treatment resulted in loss of complex biofilm architecture and morphological changes to bacterial cells, visualised using confocal microscopy. When monitoring the biofilms using SIFT-MS, ammonia and hydrogen cyanide levels peaked at 12 hours at 2273 ppb (±826.4) and 138 ppb (±49.1) respectively and were detectable throughout experimentation. ConclusionsThe collagen wound biofilm model has been developed to facilitate growth of reproducible biofilms under wound-like conditions. We have successfully used this method to: (1) evaluate antimicrobial efficacy and kinetics, clearly demonstrating the development of antimicrobial tolerance in biofilm cultures; (2) characterise volatile metabolite production by P. aeruginosa biofilms, demonstrating the potential use of this method in metabolomics studies

    Plasma and cellular fibronectin: distinct and independent functions during tissue repair

    Get PDF
    Fibronectin (FN) is a ubiquitous extracellular matrix (ECM) glycoprotein that plays vital roles during tissue repair. The plasma form of FN circulates in the blood, and upon tissue injury, is incorporated into fibrin clots to exert effects on platelet function and to mediate hemostasis. Cellular FN is then synthesized and assembled by cells as they migrate into the clot to reconstitute damaged tissue. The assembly of FN into a complex three-dimensional matrix during physiological repair plays a key role not only as a structural scaffold, but also as a regulator of cell function during this stage of tissue repair. FN fibrillogenesis is a complex, stepwise process that is strictly regulated by a multitude of factors. During fibrosis, there is excessive deposition of ECM, of which FN is one of the major components. Aberrant FN-matrix assembly is a major contributing factor to the switch from normal tissue repair to misregulated fibrosis. Understanding the mechanisms involved in FN assembly and how these interplay with cellular, fibrotic and immune responses may reveal targets for the future development of therapies to regulate aberrant tissue-repair processes

    Using a modified Delphi methodology to gain consensus on the use of dressings in chronic wounds management

    Get PDF
    Objective: Managing chronic wounds is associated with a burden to patients, caregivers, health services and society and there is a lack of clarity regarding the role of dressings in improving outcomes. This study aimed to provide understanding on a range of topics, including: the definition of chronicity in wounds, the burden of illness, clinical outcomes of reducing healing time and the impact of early interventions on clinical and economic outcomes and the role of matrix metalloproteinases (MMPs) in wound healing. Method: A systematic review of the literature was carried out on the role of dressings in diabetic foot ulcer (DFU), and venous leg ulcer (VLU) management strategies, their effectiveness, associated resource use/cost, and quality of life (QoL) impact on patients. From this evidence-base statements were written regarding chronicity in wounds, burden of illness, healing time, and the role of MMPs, early interventions and dressings. A modified Delphi methodology involving two iterations of email questionnaires followed by a face-to-face meeting was used to validate the statements, in order to arrive at a consensus for each. Clinical experts were selected, representing nurses, surgeons, podiatrists, academics, and policy experts. Results: In the first round, 38/47 statements reached or exceeded the consensus threshold of 80% and none were rejected. According to the protocol, any statement not confirmed or rejected had to be modified using the comments from participants and resubmitted. In the second round, 5/9 remaining statements were confirmed and none rejected, leaving 4 to discuss at the meeting. All final statements were confirmed with at least 80% consensus. Conclusion: This modified Delphi panel sought to gain clarity from clinical experts surrounding the use of dressings in the management of chronic wounds. A full consensus statement was developed to help clinicians and policy makers improve the management of patients with these conditions

    Analysis of Insulin in Human Breast Milk in Mothers with Type 1 and Type 2 Diabetes Mellitus

    Get PDF
    Despite the important role that insulin plays in the human body, very little is known about its presence in human milk. Levels rapidly decrease during the first few days of lactation and then, unlike other serum proteins of similar size, achieve comparable levels to those in serum. Despite this, current guides for medical treatment suggest that insulin does not pass into milk, raising the question of where the insulin in milk originates. Five mothers without diabetes, 4 mothers with type 1, and 5 mothers with type 2 diabetes collected milk samples over a 24-hour period. Samples were analysed for total and endogenous insulin content and for c-peptide content. All of the insulin present in the milk of type 1 mothers was artificial, and c-peptide levels were 100x lower than in serum. This demonstrates that insulin is transported into human milk at comparable concentration to serum, suggesting an active transport mechanism. The role of insulin in milk is yet to be determined; however, there are a number of potential implications for the infant of the presence of artificial insulins in milk

    Hepatic iron concentration correlates with insulin sensitivity in nonalcoholic fatty liver disease

    Get PDF
    Rodent and cell‐culture models support a role for iron‐related adipokine dysregulation and insulin resistance in the pathogenesis of nonalcoholic fatty liver disease (NAFLD); however, substantial human data are lacking. We examined the relationship between measures of iron status, adipokines, and insulin resistance in patients with NAFLD in the presence and absence of venesection. This study forms part of the Impact of Iron on Insulin Resistance and Liver Histology in Nonalcoholic Steatohepatitis (IIRON2) study, a prospective randomized controlled trial of venesection for adults with NAFLD. Paired serum samples at baseline and 6 months (end of treatment) in controls (n = 28) and patients who had venesection (n = 23) were assayed for adiponectin, leptin, resistin, retinol binding protein‐4, tumor necrosis factor α, and interleukin‐6, using a Quantibody, customized, multiplexed enzyme‐linked immunosorbent assay array. Hepatic iron concentration (HIC) was determined using MR FerriScan. Unexpectedly, analysis revealed a significant positive correlation between baseline serum adiponectin concentration and HIC, which strengthened after correction for age, sex, and body mass index (rho = 0.36; P = 0.007). In addition, there were significant inverse correlations between HIC and measures of insulin resistance (adipose tissue insulin resistance (Adipo‐IR), serum insulin, serum glucose, homeostasis model assessment of insulin resistance, hemoglobin A1c, and hepatic steatosis), whereas a positive correlation was noted with the insulin sensitivity index. Changes in serum adipokines over 6 months did not differ between the control and venesection groups. Conclusion: HIC positively correlates with serum adiponectin and insulin sensitivity in patients with NAFLD. Further study is required to establish causality and mechanistic explanations for these associations and their relevance in the pathogenesis of insulin resistance and NAFLD

    Abortion and Lamb Mortality between Pregnancy Scanning and Lamb Marking for Maiden Ewes in Southern Australia

    No full text
    The contribution of abortions to the overall mortality of lambs born to maiden (primiparous) ewes in Australia remains unclear. This cohort study aimed to quantify abortion and lamb mortality for ewe lambs and maiden Merino two-tooth ewes. Lamb mortality from pregnancy scanning to marking were determined for 19 ewe lamb and 11 Merino two-tooth ewe flocks across southern Australia. Average lamb mortality from scanning to marking was 35.8% (range 14.3–71.1%) for the ewe lambs and 29.4% (range 19.7–52.7%) for the two-tooth ewes. Mid-pregnancy abortion was detected in 5.7% of ewes (range 0–50%) in the ewe lamb flocks and 0.9% of ewes (range 0–4.4%) in the two-tooth ewe flocks. Mid-pregnancy abortion affecting ≥2% of ewes was observed in 6/19 ewe lamb flocks and 2/11 two-tooth ewe flocks. Lamb mortality from birth to marking represented the greatest contributor to foetal and lamb mortality after scanning, but mid-pregnancy abortion was an important contributor to lamb mortality in some ewe lamb flocks. Variability between the flocks indicates scope to improve the overall reproductive performance for maiden ewes by reducing foetal and lamb losses. Addressing mid-pregnancy abortion may improve the reproductive performance in some flocks
    corecore