7 research outputs found

    High expression of ErbB2 contributes to cholangiocarcinoma cell invasion and proliferation through AKT/p70S6K

    No full text
    AIM: To compare the impact of ErbB2 on cell invasion and proliferation in cholangiocarcinoma (CCA) cell lines

    Iron dynamics and microbiome dysbiosis during tobacco-associated lung adenocarcinoma development

    Get PDF
    https://openworks.mdanderson.org/sumexp21/1096/thumbnail.jp

    Functional Significance of Aurora Kinases–p53 Protein Family Interactions in Cancer

    Get PDF
    Aurora kinases play critical roles in regulating spindle assembly, chromosome segregation and cytokinesis to ensure faithful segregation of chromosomes during mitotic cell division cycle. Molecular and cell biological studies have revealed that Aurora kinases, at physiological levels, orchestrate complex sequential cellular processes at distinct subcellular locations through functional interactions with its various substrates. Aberrant expression of Aurora kinases, on the other hand, cause defects in mitotic spindle assembly, checkpoint response activation and chromosome segregation leading to chromosomal instability. Elevated expression of Aurora kinases correlating with chromosomal instability is frequently detected in human cancers. Recent genomic profiling of about 3000 human cancer tissue specimens to identify various oncogenic signatures in the Cancer Genome Atlas (TCGA) project has reported that recurrent amplification and overexpression of Aurora kinase-A characterize distinct subsets of human tumors across multiple cancer types.Besides the well characterized canonical pathway interactions of Aurora kinases in regulating assembly of the mitotic apparatus and chromosome segregation, growing evidence also supports the notion that deregulated expression of Aurora kinases in non-canonical pathways drive transformation and genomic instability by antagonizing tumor suppressor and exacerbating oncogenic signaling through direct interactions with critical proteins. Aberrant expression of the Aurora kinases-p53 protein family signaling axes appears to be critical in the abrogation of p53 protein family mediated tumor suppressor pathways frequently deregulated during oncogenic transformation process. Recent findings reveal the existence of feedback regulatory loops in mRNA expression and protein stability of these protein families and their consequences on downstream effectors involved in diverse physiological functions, such as, mitotic progression, checkpoint response pathways as well as self-renewal and pluripotency in embryonic stem cells. While these investigations have focused on the functional consequences of Aurora kinase protein family interactions with wild-type p53 family proteins, those involving Aurora kinases and mutant p53 remain to be elucidated.This article presents a comprehensive review of studies on Aurora kinases-p53 protein family interactions along with a prospective view on the possible functional consequences of Aurora kinase-mutant p53 signaling pathways in tumor cells. Additionally, we also discuss therapeutic implications of these findings in Aurora kinases overexpressing subsets of human tumors

    Pathogenesis of Tobacco-Associated Lung Adenocarcinoma Is Closely Coupled with Changes in the Gut and Lung Microbiomes

    No full text
    Microbial dysbiosis has emerged as a modulator of oncogenesis and response to therapy, particularly in lung cancer. Here, we investigate the evolution of the gut and lung microbiomes following exposure to a tobacco carcinogen. We performed 16S rRNA-Seq of fecal and lung samples collected prior to and at several timepoints following (nicotine-specific nitrosamine ketone/NNK) exposure in Gprc5a−/− mice that were previously shown to exhibit accelerated lung adenocarcinoma (LUAD) development following NNK exposure. We found significant progressive changes in human-relevant gut and lung microbiome members (e.g., Odoribacter, Alistipes, Akkermansia, and Ruminococus) that are closely associated with the phenotypic development of LUAD and immunotherapeutic response in human lung cancer patients. These changes were associated with decreased short-chain fatty acids (propionic acid and butyric acid) following exposure to NNK. We next sought to study the impact of Lcn2 expression, a bacterial growth inhibitor, given our previous findings on its protective role in LUAD development. Indeed, we found that the loss of Lcn2 was associated with widespread gut and lung microbiome changes at all timepoints, distinct from those observed in our Gprc5a−/− mouse model, including a decrease in abundance and diversity. Our overall findings apprise novel cues implicating microbial phenotypes in the development of tobacco-associated LUAD

    Resolving the spatial and cellular architecture of lung adenocarcinoma by multiregion single-cell sequencing

    No full text
    Little is known of the geospatial architecture of individual cell populations in lung adenocarcinoma (LUAD) evolution. Here, we perform single-cell RNA sequencing of 186,916 cells from five early-stage LUADs and 14 multiregion normal lung tissues of defined spatial proximities from the tumors. We show that cellular lineages, states, and transcriptomic features geospatially evolve across normal regions to LUADs. LUADs also exhibit pronounced intratumor cell heterogeneity within single sites and transcriptional lineage-plasticity programs. T regulatory cell phenotypes are increased in normal tissues with proximity to LUAD, in contrast to diminished signatures and fractions of cytotoxic CD8+ T cells, antigen-presenting macrophages, and inflammatory dendritic cells. We further find that the LUAD ligand-receptor interactome harbors increased expression of epithelial CD24, which mediates protumor phenotypes. These data provide a spatial atlas of LUAD evolution, and a resource for identification of targets for its treatment. SIGNIFICANCE: The geospatial ecosystem of the peripheral lung and early-stage LUAD is not known. Our multiregion single-cell sequencing analyses unravel cell populations, states, and phenotypes in the spatial and ecologic evolution of LUAD from the lung that comprise high-potential targets for early interception.This article is highlighted in the In This Issue feature, p. 2355
    corecore