187 research outputs found

    Normal Pressure Hydrocephalus as an Unusual Presentation of Supratentorial Extraventricular Space-Occupying Processes: Report on Two Cases

    Get PDF
    Normal pressure hydrocephalus (NPH) is a clinical and radiographic syndrome characterized by ventriculomegaly, abnormal gait, urinary incontinence, and dementia. The condition may occur due to a variety of secondary causes but may be idiopathic in approximately 50% of patients. Secondary causes may include head injury, subarachnoid hemorrhage, meningitis, and central nervous system tumor. Here, we describe two extremely rare cases of supratentorial extraventricular space-occupying processes: meningioma and glioblastoma multiforme, which initially presented with NPH

    Development of a thermal ionizer as ion catcher

    Full text link
    An effective ion catcher is an important part of a radioactive beam facility that is based on in-flight production. The catcher stops fast radioactive products and emits them as singly charged slow ions. Current ion catchers are based on stopping in He and H2_2 gas. However, with increasing intensity of the secondary beam the amount of ion-electron pairs created eventually prevents the electromagnetic extraction of the radioactive ions from the gas cell. In contrast, such limitations are not present in thermal ionizers used with the ISOL production technique. Therefore, at least for alkaline and alkaline earth elements, a thermal ionizer should then be preferred. An important use of the TRIμ\muP facility will be for precision measurements using atom traps. Atom trapping is particularly possible for alkaline and alkaline earth isotopes. The facility can produce up to 109^9 s1^{-1} of various Na isotopes with the in-flight method. Therefore, we have built and tested a thermal ionizer. An overview of the operation, design, construction, and commissioning of the thermal ionizer for TRIμ\muP will be presented along with first results for 20^{20}Na and 21^{21}Na.Comment: 10 pages, 4 figures, XVth International Conference on Electromagnetic Isotope Separators and Techniques Related to their Applications (EMIS 2007

    Aspects of Cooling at the TRIμ\muP Facility

    Full text link
    The Triμ\muP facility at KVI is dedicated to provide short lived radioactive isotopes at low kinetic energies to users. It comprised different cooling schemes for a variety of energy ranges, from GeV down to the neV scale. The isotopes are produced using beam of the AGOR cyclotron at KVI. They are separated from the primary beam by a magnetic separator. A crucial part of such a facility is the ability to stop and extract isotopes into a low energy beamline which guides them to the experiment. In particular we are investigating stopping in matter and buffer gases. After the extraction the isotopes can be stored in neutral atoms or ion traps for experiments. Our research includes precision studies of nuclear β\beta-decay through β\beta-ν\nu momentum correlations as well as searches for permanent electric dipole moments in heavy atomic systems like radium. Such experiments offer a large potential for discovering new physics.Comment: COOL05 Workshop, Galena, Il, USA, 18-23. Sept. 2005, 5 pages, 3 figure

    Production of Radioactive Nuclides in Inverse Reaction Kinematics

    Get PDF
    Efficient production of short-lived radioactive isotopes in inverse reaction kinematics is an important technique for various applications. It is particularly interesting when the isotope of interest is only a few nucleons away from a stable isotope. In this article production via charge exchange and stripping reactions in combination with a magnetic separator is explored. The relation between the separator transmission efficiency, the production yield, and the choice of beam energy is discussed. The results of some exploratory experiments will be presented.Comment: 10 pages, 4 figures, to be submitted to Nucl. Instr. and Met

    Measurement of the half-life of the T=12\frac{1}{2} mirror decay of 19^{19}Ne and its implication on physics beyond the standard model

    Get PDF
    The 12+12+\frac{1}{2}^+ \rightarrow \frac{1}{2}^+ superallowed mixed mirror decay of 19^{19}Ne to 19^{19}F is excellently suited for high precision studies of the weak interaction. However, there is some disagreement on the value of the half-life. In a new measurement we have determined this quantity to be T1/2T_{1/2} = 17.2832±0.0051(stat)17.2832 \pm 0.0051_{(stat)} ±0.0066(sys)\pm 0.0066_{(sys)} s, which differs from the previous world average by 3 standard deviations. The impact of this measurement on limits for physics beyond the standard model such as the presence of tensor currents is discussed.Comment: 5 pages, 3 figures, 1 tabl

    Dual Magnetic Separator for TRIμ\muP

    Full text link
    The TRIμ\muP facility, under construction at KVI, requires the production and separation of short-lived and rare isotopes. Direct reactions, fragmentation and fusion-evaporation reactions in normal and inverse kinematics are foreseen to produce nuclides of interest with a variety of heavy-ion beams from the superconducting cyclotron AGOR. For this purpose, we have designed, constructed and commissioned a versatile magnetic separator that allows efficient injection into an ion catcher, i.e., gas-filled stopper/cooler or thermal ionizer, from which a low energy radioactive beam will be extracted. The separator performance was tested with the production and clean separation of 21^{21}Na ions, where a beam purity of 99.5% could be achieved. For fusion-evaporation products, some of the features of its operation as a gas-filled recoil separator were tested.Comment: accepted by Nucl.Instr. Meth., final versio

    In gas laser ionization and spectroscopy experiments at the Superconducting Separator Spectrometer (S3): Conceptual studies and preliminary design

    Get PDF
    International audienceThe results of preparatory experiments and the preliminary designs of a new in-gas laser ionization and spectroscopy setup, to be coupled to the Super Separator Spectrometer S3 of SPIRAL2-GANIL, are reported. Special attention is given to the development and tests to carry out a full implementation of the in-gas jet laser spectroscopy technique. Application of this novel technique to radioactive species will allow highsensitivity and enhanced-resolution laser spectroscopy studies of ground- and excited-state properties of exotic nuclei
    corecore