12 research outputs found

    Feedback from supermassive black holes transforms centrals into passive galaxies by ejecting circumgalactic gas

    Get PDF
    Davies et al. (2019) established that for L^* galaxies the fraction of baryons in the circumgalactic medium (CGM) is inversely correlated with the mass of their central supermassive black holes (BHs) in the EAGLE hydrodynamic simulation. The interpretation is that, over time, a more massive BH has provided more energy to transport baryons beyond the virial radius, which additionally reduces gas accretion and star formation. We continue this research by focusing on the relationship between the 1) BH masses, 2) physical and observational properties of the CGM, and 3) galaxy colours for Milky Way-mass systems. The ratio of the cumulative BH feedback energy over the gaseous halo binding energy is a strong predictor of the CGM gas content, with BHs injecting >~10x the binding energy resulting in gas-poor haloes. Observable tracers of the CGM, including CIV, OVI, and HI absorption line measurements, are found to be effective tracers of the total z~0 CGM halo mass. We use high-cadence simulation outputs to demonstrate that BH feedback pushes baryons beyond the virial radius within 100 Myr timescales, but that CGM metal tracers take longer (0.5-2.5 Gyr) to respond. Secular evolution of galaxies results in blue, star-forming or red, passive populations depending on the cumulative feedback from BHs. The reddest quartile of galaxies with M_*=10^{10.2-10.7} M_solar (median u-r = 2.28) has a CGM mass that is 2.5x lower than the bluest quartile (u-r=1.59). We propose strategies for observing the predicted lower CGM column densities and covering fractions around galaxies hosting more massive BHs using the Cosmic Origins Spectrograph on Hubble

    Colours and luminosities of z=0.1 simulated galaxies in the EAGLE simulations

    Get PDF
    We calculate the colours and luminosities of redshift z = 0.1 galaxies from the EAGLE simulation suite using the GALAXEV population synthesis models. We take into account obscuration by dust in birth clouds and diffuse ISM using a two-component screen model, following the prescription of Charlot and Fall. We compare models in which the dust optical depth is constant to models where it depends on gas metallicity, gas fraction and orientation. The colours of EAGLE galaxies for the more sophisticated models are in broad agreement with those of observed galaxies. In particular, EAGLE produces a red sequence of passive galaxies and a blue cloud of star forming galaxies, with approximately the correct fraction of galaxies in each population and with g-r colours within 0.1 magnitudes of those observed. Luminosity functions from UV to NIR wavelengths differ from observations at a level comparable to systematic shifts resulting from a choice between Petrosian and Kron photometric apertures. Despite the generally good agreement there are clear discrepancies with observations. The blue cloud of EAGLE galaxies extends to somewhat higher luminosities than in the data, consistent with the modest underestimate of the passive fraction in massive EAGLE galaxies. There is also a moderate excess of bright blue galaxies compared to observations. The overall level of agreement with the observed colour distribution suggests that EAGLE galaxies at z = 0.1 have ages, metallicities and levels of obscuration that are comparable to those of observed galaxies

    The Fermi GeV excess: challenges for the dark matter interpretation

    Get PDF
    One of the most exciting recent results in the field of dark matter indirect searches has been the discovery of an excess emission in gamma rays from the Galactic centre above the standard astrophysical background. We show that current hydrodynamic simulations, namely simulated Milky Way-like galaxies within the "Evolution and Assembly of GaLaxies and their Environments" (EAGLE) project, challenge the possibility to interpret the GeV excess as due to annihilation of dark matter particles in the halo if the Milky Way

    Molecular hydrogen abundances of galaxies in the EAGLE simulations

    Get PDF
    We investigate the abundance of galactic molecular hydrogen (H2_2) in the "Evolution and Assembly of GaLaxies and their Environments" (EAGLE) cosmological hydrodynamic simulations. We assign H2_2 masses to gas particles in the simulations in post-processing using two different prescriptions that depend on the local dust-to-gas ratio and the interstellar radiation field. Both result in H2_2 galaxy mass functions that agree well with observations in the local and high-redshift Universe. The simulations reproduce the observed scaling relations between the mass of H2_2 and the stellar mass, star formation rate and stellar surface density. Towards high edshifts, galaxies in the simulations display larger H2_2 mass fractions, and correspondingly lower H2_2 depletion timescales, also in good agreement with observations. The comoving mass density of H2_2 in units of the critical density, ΩH2\Omega_{\rm H_2}, peaks at z1.21.5z\approx 1.2-1.5, later than the predicted peak of the cosmic star formation rate activity, at z2z\approx 2. This difference stems from the decrease in gas metallicity and increase in interstellar radiation field with redshift, both of which hamper H2_2 formation. We find that the cosmic H2_2 budget is dominated by galaxies with MH2>109MM_{\rm H_2}>10^9\,\rm M_{\odot}, star formation rates >10Myr1>10\,\rm M_{\odot}\,\rm yr^{-1} and stellar masses Mstellar>1010MM_{\rm stellar}>10^{10}\,\rm M_{\odot}, which are readily observable in the optical and near-IR. The match between the H2_2 properties of galaxies that emerge in the simulations and observations is remarkable, particularly since H2_2 observations were not used to adjust parameters in EAGLE

    The EAGLE simulations of galaxy formation: calibration of subgrid physics and model variations

    Get PDF
    We present results from thirteen cosmological simulations that explore the parameter space of the "Evolution and Assembly of GaLaxies and their Environments" (EAGLE) simulation project. Four of the simulations follow the evolution of a periodic cube L = 50 cMpc on a side, and each employs a different subgrid model of the energetic feedback associated with star formation. The relevant parameters were adjusted so that the simulations each reproduce the observed galaxy stellar mass function at z = 0.1. Three of the simulations fail to form disc galaxies as extended as observed, and we show analytically that this is a consequence of numerical radiative losses that reduce the efficiency of stellar feedback in high-density gas. Such losses are greatly reduced in the fourth simulation - the EAGLE reference model - by injecting more energy in higher density gas. This model produces galaxies with the observed size distribution, and also reproduces many galaxy scaling relations. In the remaining nine simulations, a single parameter or process of the reference model was varied at a time. We find that the properties of galaxies with stellar mass <~ M* (the "knee" of the galaxy stellar mass function) are largely governed by feedback associated with star formation, while those of more massive galaxies are also controlled by feedback from accretion onto their central black holes. Both processes must be efficient in order to reproduce the observed galaxy population. In general, simulations that have been calibrated to reproduce the low-redshift galaxy stellar mass function will still not form realistic galaxies, but the additional requirement that galaxy sizes be acceptable leads to agreement with a large range of observables

    The EAGLE simulation of galaxy formation: public release of halo and galaxy catalogues

    Get PDF
    We present the public data release of halo and galaxy catalogues extracted from the EAGLE suite of cosmological hydrodynamical simulations of galaxy formation. These simulations were performed with an enhanced version of the GADGET code that includes a modified hydrodynamics solver, time-step limiter and subgrid treatments of baryonic physics, such as stellar mass loss, element-by-element radiative cooling, star formation and feedback from star formation and black hole accretion. The simulation suite includes runs performed in volumes ranging from 25 to 100 comoving megaparsecs per side, with numerical resolution chosen to marginally resolve the Jeans mass of the gas at the star formation threshold. The free parameters of the subgrid models for feedback are calibrated to the redshift z=0 galaxy stellar mass function, galaxy sizes and black hole mass - stellar mass relation. The simulations have been shown to match a wide range of observations for present-day and higher-redshift galaxies. The raw particle data have been used to link galaxies across redshifts by creating merger trees. The indexing of the tree produces a simple way to connect a galaxy at one redshift to its progenitors at higher redshift and to identify its descendants at lower redshift. In this paper we present a relational database which we are making available for general use. A large number of properties of haloes and galaxies and their merger trees are stored in the database, including stellar masses, star formation rates, metallicities, photometric measurements and mock gri images. Complex queries can be created to explore the evolution of more than 10^5 galaxies, examples of which are provided in appendix. (abridged

    The Hydrangea simulations: galaxy formation in and around massive clusters

    Get PDF
    We introduce the Hydrangea simulations, a suite of 24 cosmological hydrodynamic zoom-in simulations of massive galaxy clusters (M_200c = 10^14-10^15 M_Sun) with baryon particle masses of ~10^6 M_Sun. Designed to study the impact of the cluster environment on galaxy formation, they are a key part of the `Cluster-EAGLE' project (Barnes et al. 2017). They use a galaxy formation model developed for the EAGLE project, which has been shown to yield both realistic field galaxies and hot gas fractions of galaxy groups consistent with observations. The total stellar mass content of the simulated clusters agrees with observations, but central cluster galaxies are too massive, by up to 0.6 dex. Passive satellite fractions are higher than in the field, and at stellar masses Mstar > 10^10 M_Sun this environmental effect is quantitatively consistent with observations. The predicted satellite stellar mass function matches data from local cluster surveys. Normalized to total mass, there are fewer low-mass (Mstar 5r_200c). This is caused by a significantly increased stellar mass fraction of (sub-)haloes in the cluster environment, by up to ~0.3 dex even well beyond r_200c. Haloes near clusters are also more concentrated than equally massive field haloes, but these two effects are largely uncorrelated

    The link between the assembly of the inner dark matter halo and the angular momentum evolution of galaxies in the EAGLE simulation

    Get PDF
    We explore the co-evolution of the specific angular momentum of dark matter haloes and the cold baryons that comprise the galaxies within. We study over 2000 galaxies within the reference cosmological hydrodynamical simulation of the ‘Evolution and Assembly of GaLaxies and their Environments’ (EAGLE) project. We employ a methodology within which the evolutionary history of a system is specified by the time-evolving properties of the Lagrangian particles that define it at z=0.We find a strong correlation between the evolution of the specific angular momentum of today’s stars (cold gas) and that of the inner (whole) dark matter halo they are associated with. This link is particularly strong for the stars formed before the epoch of maximum expansion and subsequent collapse of the central dark matter halo (turnaround). Spheroids are assembled primarily from stars formed prior to turnaround, and suffer a net loss of angular momentum associated with the strong merging activity during the assembly of the inner dark matter halo. Stellar discs retain their specific angular momentum since they are comprised of stars formed mainly after turnaround, from gas that mostly preserves the high specific angular momentum it acquired by tidal torques during the linear growth of the halo. Since the specific angular momentum loss of the stars is tied to the galaxy’s morphology today, it may be possible to use our results to predict, statistically, the maximum loss of specific angular momentum of the inner part of a halo given the morphology of the galaxy it hosts

    The Dynamics and Distribution of Angular Momentum in HiZELS Star – Forming Galaxies at z = 0.8 – 3.3

    Get PDF
    We present adaptive optics assisted integral field spectroscopy of 34 star–forming galaxies at z = 0.8–3.3 selected from the HiZELS narrow-band survey. We measure the kinematics of the ionised interstellar medium on ∼1 kpc scales, and show that the galaxies are turbulent, with a median ratio of rotational to dispersion support of V / σ = 0.82 ± 0.13. We combine the dynamics with high-resolution rest-frame optical imaging and extract emission line rotation curves. We show that high-redshift star forming galaxies follow a similar power-law trend in specific angular momentum with stellar mass as that of local late type galaxies. We exploit the high resolution of our data and examine the radial distribution of angular momentum within each galaxy by constructing total angular momentum profiles. Although the stellar mass of a typical star-forming galaxy is expected to grow by a factor ∼ 8 in the ∼5 Gyrs between z ∼ 3.3 and z ∼ 0.8, we show that the internal distribution of angular momentum becomes less centrally concentrated in this period i.e the angular momentum grows outwards. To interpret our observations, we exploit the EAGLE simulation and trace the angular momentum evolution of star forming galaxies from z ∼ 3 to z ∼ 0, identifying a similar trend of decreasing angular momentum concentration. This change is attributed to a combination of gas accretion in the outer disk, and feedback that preferentially arises from the central regions of the galaxy. We discuss how the combination of the growing bulge and angular momentum stabilises the disk and gives rise to the Hubble sequence
    corecore