43 research outputs found

    Thiol-based redox regulation in sexual plant reproduction: new insights and perspectives

    Get PDF
    The success of sexual reproduction in plants involves (i) the proper formation of the plant gametophytes (pollen and embryo sac) containing the gametes, (ii) the accomplishment of specific interactions between pollen grains and the stigma, which subsequently lead to (iii) the fusion of the gametes and eventually to (iv) the seed setting. Owing to the lack of mobility, plants have developed specific regulatory mechanisms to control all developmental events underlying the sexual plant reproduction according to environmental challenges. Over the last decade, redox regulation and signaling have come into sight as crucial mechanisms able to manage critical stages during sexual plant reproduction. This regulation involves a complex redox network which includes reactive oxygen species (ROS), reactive nitrogen species (RNS), glutathione and other classic buffer molecules or antioxidant proteins, and some thiol/disulphide-containing proteins belonging to the thioredoxin superfamily, like glutaredoxins (GRXs) or thioredoxins (TRXs). These proteins participate as critical elements not only in the switch between the mitotic to the meiotic cycle but also at further developmental stages of microsporogenesis. They are also implicated in the regulation of pollen rejection as the result of self-incompatibility. In addition, they display precise space-temporal patterns of expression and are present in specific localizations like the stigmatic papillae or the mature pollen, although their functions and subcellular localizations are not clear yet. In this review we summarize insights and perspectives about the presence of thiol/disulphide-containing proteins in plant reproduction, taking into account the general context of the cell redox network. [EN]European Regional Development Fund (ERDF) through the projects BFU2011-22779, P2010-AGR6274, P2010-CVI5767 and P2011-CVI-7487. Jose A. Traverso thanks Spanish CSIC funding within the frame of JAE-DOC program.Peer reviewe

    NADPH Oxidase-Dependent Superoxide Production in Plant Reproductive Tissues

    Get PDF
    In the life cycle of a flowering plant, the male gametophyte (pollen grain) produced in the anther reaches the stigmatic surface and initiates the pollen–pistil interaction, an important step in plant reproduction, which ultimately leads to the delivery of two sperm cells to the female gametophyte (embryo sac) inside the ovule. The pollen tube undergoes a strictly apical expansion characterized by a high growth rate, whose targeting should be tightly regulated. A continuous exchange of signals therefore takes place between the haploid pollen and diploid tissue of the pistil until fertilization. In compatible interactions, theses processes result in double fertilization to form a zygote (2n) and the triploid endosperm. Among the large number of signaling mechanisms involved, the redox network appears to be particularly important. Respiratory burst oxidase homologs (Rbohs) are superoxide-producing enzymes involved in a broad range of processes in plant physiology. In this study, we review the latest findings on understanding Rboh activity in sexual plant reproduction, with a particular focus on the male gametophyte from the anther development stages to the crowning point of fertilization. Rboh isoforms have been identified in both the male and female gametophyte and have proven to be tightly regulated. Their role at crucial points such as proper growth of pollen tube, self-incompatibility response and eventual fertilization is discussed. [EN]European Regional Development Fund (ERDF) co-financed grants: BFU2008-006292, BFU2011-22779, CSIC-201540E065, and RECUPERA2020-3.1.4.Peer reviewe

    Combining Genetic and Transcriptomic Approaches to Identify Transporter-Coding Genes as Likely Responsible for a Repeatable Salt Tolerance QTL in Citrus

    Get PDF
    The study was co-funded by grants RTA2011-00132-C2 (M.J.A.), AGL2014-56675-R (M.J.A.), AGL2017-82452-C2 (A.Be., M.J.A.), and PID2021-124599OB-I00 (A.Be.) from the Spanish Ministry of Science and Innovation/the Spanish Research Agency, by grant 51917 (M.J.A.) from the Generalitat Valenciana, as well as the European Regional Development Fund (ERDF), MCIN/AEI/10.13039/501100011033, and ERDF “A way of making Europe”. J.E. was supported by a JAE Intro CSIC grant (JAEINT_19_00566).Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi. com/article/10.3390/ijms242115759/s1The excessive accumulation of chloride (Cl−) in leaves due to salinity is frequently related to decreased yield in citrus. Two salt tolerance experiments to detect quantitative trait loci (QTLs) for leaf concentrations of Cl−, Na+, and other traits using the same reference progeny derived from the salt-tolerant Cleopatra mandarin (Citrus reshni) and the disease-resistant donor Poncirus trifoliata were performed with the aim to identify repeatable QTLs that regulate leaf Cl− (and/or Na+) exclusion across independent experiments in citrus, as well as potential candidate genes involved. A repeatable QTL controlling leaf Cl− was detected in chromosome 6 (LCl-6), where 23 potential candidate genes coding for transporters were identified using the C. clementina genome as reference. Transcriptomic analysis revealed two important candidate genes coding for a member of the nitrate transporter 1/peptide transporter family (NPF5.9) and a major facilitator superfamily (MFS) protein. Cell wall biosynthesis- and secondary metabolism-related processes appeared to play a significant role in differential gene expression in LCl-6. Six likely gene candidates were mapped in LCl-6, showing conserved synteny in C. reshni. In conclusion, markers to select beneficial Cleopatra mandarin alleles of likely candidate genes in LCl-6 to improve salt tolerance in citrus rootstock breeding programs are provided.Spanish Ministry of Science and Innovation/Spanish Research Agency RTA2011-00132-C2, AGL2014-56675-R, AGL2017-82452-C2, PID2021-124599OB-I00Generalitat Valenciana 51917European Regional Development Fund (ERDF)MCIN/AEI/10.13039/501100011033ERDF “A way of making Europe”CSIC grant (JAEINT_19_00566

    Characterization of the sensory gene repertoire of Triatoma infestans and the effect of blood ingestion on its antennal expression

    Get PDF
    Currently, Triatoma infestans is the main vector of Chagas disease in Argentina, Paraguay, and Bolivia. As many T. infestans populations present insecticide resistance, directly impacting control campaigns, alternative control methods, like those based on behavioral manipulation are needed. Bug nutritional and developmental status modulate bug responsiveness to host-related sensory cues. In order to understand the molecular bases of this modulation, we sequenced the antennal transcriptome of T. infestans and compared the gene expression profiles between unfed and fed insects.Para acceder a la videoconferencia completa, hacer clic en "Enlace externo".Sociedad Latinoamericana de Ecología de Vectore

    Secuenciación metagenómica en queratitis microbiana con cultivo negativo

    Get PDF
    Propósito: Evaluar la microbiota de las muestras de queratitis microbiana de la membrana de impresión corneal (MIC) con cultivo negativo mediante el uso del análisis metagenómico de escopeta. Métodos: El ADN de las muestras de queratitis microbiana se recogió con CIM y se extrajo utilizando el MasterPure™ Complete DNA and RNA Purification Kit (Epicentre). El ADN se fragmentó por sonicación en fragmentos de 300 a 400 pares de bases (pb) utilizando Bioruptor® (Diagenode, Bélgica) y luego se utilizó como plantilla para la preparación de bibliotecas. Las bibliotecas de ADN se secuenciaron en Illumina® HiSeq2500. Las lecturas resultantes se sometieron a control de calidad, se recortaron y se compararon con el genoma humano de referencia. Las lecturas no mapeadas se clasificaron taxonómicamente utilizando el software Kraken. Resultados: Se incluyeron en el estudio 18 muestras de queratitis microbiana. En 5 muestras se encontró Brevundimonas diminuta, mientras que en 6 se observó la presencia de infecciones víricas. También se identificaron Cutibacterium acnes, Staphylococcus aureus, Moraxella lacunata y Pseudomonas alcaligenes como presunta causa putativa de la infección en 7 muestras. Conclusiones: La secuenciación Shotgun puede utilizarse como herramienta diagnóstica en muestras de queratitis microbiana. Este método de diagnóstico amplía las pruebas disponibles para diagnosticar infecciones oculares y podría ser clínicamente significativo en muestras con cultivo negativo.Purpose: To evaluate the microbiota of culture negative Corneal Impression Membrane (CIM) microbial keratitis samples with the use of shotgun metagenomics analysis. Methods: DNA of microbial keratitis samples were collected with CIM and extracted using the MasterPure™ Complete DNA and RNA Purification Kit (Epicentre). DNA was fragmented by sonication into fragments of 300 to 400 base pairs (bp) using Bioruptor® (Diagenode, Belgium) and then used as a template for library preparation. DNA libraries were sequenced on Illumina® HiSeq2500. The resulting reads were quality controlled, trimmed and mapped against the human reference genome. The unmapped reads were taxonomically classified using the Kraken software. Results: 18 microbial keratitis samples were included in the study. Brevundimonas diminuta was found in 5 samples while 6 samples showed the presence of viral infections. Cutibacterium acnes, Staphylococcus aureus, Moraxella lacunata and Pseudomonas alcaligenes were also identified as the presumed putative cause of the infection in 7 samples. Conclusions: Shotgun sequencing can be used as a diagnostic tool in microbial keratitis samples. This diagnostic method expands the available tests to diagnose eye infections and could be clinically significant in culture negative samples

    Comparative and functional triatomine genomics reveals reductions and expansions in insecticide resistance-related gene families

    Get PDF
    Background: Triatomine insects are vectors of Trypanosoma cruzi, a protozoan parasite that is the causative agent of Chagas’ disease. This is a neglected disease affecting approximately 8 million people in Latin America. The existence of diverse pyrethroid resistant populations of at least two species demonstrates the potential of triatomines to develop high levels of insecticide resistance. Therefore, the incorporation of strategies for resistance management is a main concern for vector control programs. Three enzymatic superfamilies are thought to mediate xenobiotic detoxification and resistance: Glutathione Transferases (GSTs), Cytochromes P450 (CYPs) and Carboxyl/Cholinesterases (CCEs). Improving our knowledge of key triatomine detoxification enzymes will strengthen our understanding of insecticide resistance processes in vectors of Chagas’ disease. Methods and findings: The discovery and description of detoxification gene superfamilies in normalized transcriptomes of three triatomine species: Triatoma dimidiata, Triatoma infestans and Triatoma pallidipennis is presented. Furthermore, a comparative analysis of these superfamilies among the triatomine transcriptomes and the genome of Rhodnius prolixus, also a triatomine vector of Chagas’ disease, and other well-studied insect genomes was performed. The expression pattern of detoxification genes in R. prolixus transcriptomes from key organs was analyzed. The comparisons reveal gene expansions in Sigma class GSTs, CYP3 in CYP superfamily and clade E in CCE superfamily. Moreover, several CYP families identified in these triatomines have not yet been described in other insects. Conversely, several groups of insecticide resistance related enzymes within each enzyme superfamily are reduced or lacking in triatomines. Furthermore, our qRT-PCR results showed an increase in the expression of a CYP4 gene in a T. infestans population resistant to pyrethroids. These results could point to an involvement of metabolic detoxification mechanisms on the high levels of pyrethroid resistance detected in triatomines from the Gran Chaco ecoregion. Conclusions and significance: Our results help to elucidate the potential insecticide resistance mechanisms in vectors of Chagas’ disease and provide new relevant information for this field. This study shows that metabolic resistance might be a contributing cause of the high pyrethroid resistance observed in wild T. infestans populations from the Gran Chaco ecoregion, area in which although subjected to intense pyrethroid treatments, vector control has failed. This study opens new avenues for further functional studies on triatomine detoxification mechanisms.Centro Regional de Estudios GenómicosCentro de Endocrinología Experimental y Aplicad

    Comparative and functional triatomine genomics reveals reductions and expansions in insecticide resistance-related gene families

    Get PDF
    Background: Triatomine insects are vectors of Trypanosoma cruzi, a protozoan parasite that is the causative agent of Chagas’ disease. This is a neglected disease affecting approximately 8 million people in Latin America. The existence of diverse pyrethroid resistant populations of at least two species demonstrates the potential of triatomines to develop high levels of insecticide resistance. Therefore, the incorporation of strategies for resistance management is a main concern for vector control programs. Three enzymatic superfamilies are thought to mediate xenobiotic detoxification and resistance: Glutathione Transferases (GSTs), Cytochromes P450 (CYPs) and Carboxyl/Cholinesterases (CCEs). Improving our knowledge of key triatomine detoxification enzymes will strengthen our understanding of insecticide resistance processes in vectors of Chagas’ disease. Methods and findings: The discovery and description of detoxification gene superfamilies in normalized transcriptomes of three triatomine species: Triatoma dimidiata, Triatoma infestans and Triatoma pallidipennis is presented. Furthermore, a comparative analysis of these superfamilies among the triatomine transcriptomes and the genome of Rhodnius prolixus, also a triatomine vector of Chagas’ disease, and other well-studied insect genomes was performed. The expression pattern of detoxification genes in R. prolixus transcriptomes from key organs was analyzed. The comparisons reveal gene expansions in Sigma class GSTs, CYP3 in CYP superfamily and clade E in CCE superfamily. Moreover, several CYP families identified in these triatomines have not yet been described in other insects. Conversely, several groups of insecticide resistance related enzymes within each enzyme superfamily are reduced or lacking in triatomines. Furthermore, our qRT-PCR results showed an increase in the expression of a CYP4 gene in a T. infestans population resistant to pyrethroids. These results could point to an involvement of metabolic detoxification mechanisms on the high levels of pyrethroid resistance detected in triatomines from the Gran Chaco ecoregion. Conclusions and significance: Our results help to elucidate the potential insecticide resistance mechanisms in vectors of Chagas’ disease and provide new relevant information for this field. This study shows that metabolic resistance might be a contributing cause of the high pyrethroid resistance observed in wild T. infestans populations from the Gran Chaco ecoregion, area in which although subjected to intense pyrethroid treatments, vector control has failed. This study opens new avenues for further functional studies on triatomine detoxification mechanisms.Centro Regional de Estudios GenómicosCentro de Endocrinología Experimental y Aplicad

    Biología reproductiva del olivo (BRO-EEZ-CSIC)

    Get PDF
    Trabajo presentado a las III Jornadas Nacionales del grupo de Horticultura de la SECH, celebradas en Sevilla el 6 y 7 de octubre de 2011.Peer reviewe

    Microscopy to study plant sexual reproduction

    Get PDF
    This work has been supported by numerous research projects. Currently active projects include EFDF confunded grants BFU2011-22779 (Ministerio de Economía y Competitividad), P2010-CVI5767, P2010-AGR6274 and P2011-CVI7487 (Junta de Andalucía), and PEOPLE-PIOF-GA-2011-301550 (European Research Council)Peer reviewe
    corecore