224 research outputs found
Multi-channel R-matrix analysis of CNO cycle reactions
The CNO cycle is the main process for hydrogen burning in stars somewhat more massive than the Sun. The reaction cross sections at Gamow energies are typically in the femto to pico-barn range and are consequently very difficult to measure experimentally. The CNO reaction rates are based on extrapolations of experimental data from higher energies. We are developing a multi-channel R-matrix code (AZURE) to provide a new and more comprehensive tool for fitting experimental data and making extrapolations to lower energies in all reaction and scattering channels. The 14N(p,Îł )15O reaction is the slowest reaction of the CNO cycle and thus it determines the energy production rate of CNO burning. Furthermore, this reaction plays an important role in the determination of Globular Cluster age, since the position of the turnoff point, at which the GC stars escape from the Main Sequence, is powered by the onset of the CNO burning, whose bottleneck is the 14N(p, Îł )15O. We have made a reanalysis of the most recent experimental data on the ground state and the 6.18 MeV transitions. The ratio of the cross sections of the 15N(p, Îł )16O and 15N(p,α)12C reactions determines how much catalytic material passes to higher CNO cycles and has an effect on the production of heavier elements, particularly 16O and 17O. Simultaneous analysis of both reactions for all channels suggests that the ratio ÏÎł/Ïα is smaller than previously reported
Faculty at work: Focus on teaching
Within the framework of cognitive motivation theory, selected personal and environmental motivational variables for faculty in English, chemistry, and psychology from community colleges, comprehensive colleges and universities, and research universities were regressed against faculty allocation of work effort given to teaching. The data came from a 1988 national survey. Gender ( sociodemographic ); quality of graduate school attended, career age, and rank ( career ); self-competence, self-efficacy, institutional commitment, personal interest in teaching, and percent time preferred to give to teaching ( self-valuations ); and institutional preference, consensus and support, and colleague commitment to teaching ( perception of the environment ) were entered into regressions. R 2 were generally strong (.86 for community college chemists) and significant. For all institutional types, self-valuation and perception of the environment motivators significantly accounted for the explained variance whereas sociodemographic and career variables did not.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43606/1/11162_2004_Article_BF00992182.pd
Faculty at work: Focus on research, scholarship, and service
Within the framework of cognitive motivation theory, selected personal and environmental motivational variables for faculty in eight liberal arts and science departments from community colleges, liberal arts colleges, comprehensive colleges and universities, and research universities were regressed against faculty allocation of work effort given to research, scholarship, and service. The data came from a 1988 national survey of faculty. Gender, (sociodemographic), quality of graduate school attended, career age , and rank (career); self-competence and self-efficacy regarding research, scholarship, and service and percent time prefer to give to research, scholarship, and service ( self-valuations ); and institutional preference, consensus and support , and colleague commitment to research, scholarship, and service ( perception of the environment ) were entered into regressions. R 2 s were generally strong (.64 for liberal arts-I institutions) and significant. For all institutional types, self-valuation ( self-competence and -efficacy ) motivators significantly accounted for the explained variance. Sociodemographic and career variables did not explain appreciable amounts of variance.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43607/1/11162_2004_Article_BF00992183.pd
Impact of a revised Mg(p,)Al reaction rate on the operation of the Mg-Al cycle
Proton captures on Mg isotopes play an important role in the Mg-Al cycle
active in stellar H-burning regions. In particular, low-energy nuclear
resonances in the Mg(p,)Al reaction affect the production
of radioactive Al as well as the resulting Mg/Al abundance ratio.
Reliable estimations of these quantities require precise measurements of the
strengths of low-energy resonances. Based on a new experimental study performed
at LUNA, we provide revised rates of the Mg(p,)Al
and the Mg(p,)Al reactions with corresponding
uncertainties. In the temperature range 50 to 150 MK, the new recommended rate
of the Al production is up to 5 times higher than previously
assumed. In addition, at T MK, the revised total reaction rate is a
factor of 2 higher. Note that this is the range of temperature at which the
Mg-Al cycle operates in an H-burning zone. The effects of this revision are
discussed. Due to the significantly larger Mg(p,)Al
rate, the estimated production of Al in H-burning regions is less
efficient than previously obtained. As a result, the new rates should imply a
smaller contribution from Wolf-Rayet stars to the galactic Al budget.
Similarly, we show that the AGB extra-mixing scenario does not appear able to
explain the most extreme values of Al/Al, i.e. , found
in some O-rich presolar grains. Finally, the substantial increase of the total
reaction rate makes the hypothesis of a self-pollution by massive AGBs a more
robust explanation for the Mg-Al anticorrelation observed in Globular-Cluster
stars
Uncertainty contributions to low-flow projections in Austria
The main objective of the paper is to understand the
contributions to the uncertainty in low-flow projections resulting from
hydrological model uncertainty and climate projection uncertainty. Model
uncertainty is quantified by different parameterisations of a conceptual
semi-distributed hydrologic model (TUWmodel) using 11 objective functions in
three different decades (1976–1986, 1987–1997, 1998–2008), which allows for disentangling the effect of the objective function-related uncertainty and temporal stability of model parameters. Climate projection uncertainty is
quantified by four future climate scenarios (ECHAM5-A1B, A2, B1 and
HADCM3-A1B) using a delta change approach. The approach is tested for 262
basins in Austria.
The results indicate that the seasonality of the low-flow regime is an
important factor affecting the performance of model calibration in the
reference period and the uncertainty of Q95 low-flow projections in the
future period. In Austria, the range of simulated Q95 in the reference
period is larger in basins with a summer low-flow regime than in basins with
a winter low-flow regime. The accuracy of simulated Q95 may result in a
range of up to 60 % depending on the decade used for calibration.
The low-flow projections of Q95 show an increase of low flows in the
Alps, typically in the range of 10â30âŻ% and a decrease in the
south-eastern part of Austria mostly in the range −5 to −20âŻ% for the
climate change projected for the future period 2021–2050, relative the reference
period 1978–2007. The change in seasonality varies between scenarios, but
there is a tendency for earlier low flows in the northern Alps and later low
flows in eastern Austria. The total uncertainty of Q95 projections is
the largest in basins with a winter low-flow regime and, in some basins the
range of Q95 projections exceeds 60 %. In basins with summer low flows, the total uncertainty is mostly less than 20 %. The ANOVA
assessment of the relative contribution of the three main variance components
(i.e. climate scenario, decade used for model calibration and calibration
variant representing different objective function) to the low-flow projection
uncertainty shows that in basins with summer low flows climate scenarios
contribute more than 75 % to the total projection uncertainty. In basins
with a winter low-flow regime, the median contribution of climate scenario,
decade and objective function is 29, 13 and 13 %,
respectively. The implications of the uncertainties identified in this paper
for water resource management are discussed
Status of the LUNA experiment
Luna is a pilot project initially focused on the 3He(3He, 2p)4He cross section measurement within the thermal energy region of the Sun (15â27 keV). A compact high current 50 kV ion accelerator facility including a windowless gas target system, a beam calorimeter and four detector telescopes has been built, tested and installed underground at Laboratori Nazionali del Gran Sasso. In these conditions, thanks to the cosmic ray suppression, we could attain a background level of less than 1 event per week, a rate similar to the one expected from 3He(3He, 2p)4He at the lower edge of the Sun thermal energy region
First Measurement of the He3+He3-->He4+2p Cross Section down to the Lower Edge of the Solar Gamow Peak
We give the LUNA results on the cross section measurement of a key reaction
of the proton-proton chain strongly affecting the calculated neutrino
luminosity from the Sun: He3+He3-->He4+2p. Due to the cosmic ray suppression
provided by the Gran Sasso underground laboratory it has been possible to
measure the cross section down to the lower edge of the solar Gamow peak, i.e.
as low as 16.5 keV centre of mass energy. The data clearly show the cross
section increase due to the electron screening effect but they do not exhibit
any evidence for a narrow resonance suggested to explain the observed solar
neutrino flux.Comment: 5 pages, RevTeX, and 2 figures in PostScript Submitted for
publicatio
Activation measurement of the 3He(alpha,gamma)7Be cross section at low energy
The nuclear physics input from the 3He(alpha,gamma)7Be cross section is a
major uncertainty in the fluxes of 7Be and 8B neutrinos from the Sun predicted
by solar models and in the 7Li abundance obtained in big-bang nucleosynthesis
calculations. The present work reports on a new precision experiment using the
activation technique at energies directly relevant to big-bang nucleosynthesis.
Previously such low energies had been reached experimentally only by the
prompt-gamma technique and with inferior precision. Using a windowless gas
target, high beam intensity and low background gamma-counting facilities, the
3He(alpha,gamma)7Be cross section has been determined at 127, 148 and 169 keV
center-of-mass energy with a total uncertainty of 4%. The sources of systematic
uncertainty are discussed in detail. The present data can be used in big-bang
nucleosynthesis calculations and to constrain the extrapolation of the
3He(alpha,gamma)7Be astrophysical S-factor to solar energies
The 3He(alpha,gamma)7Be S-factor at solar energies: the prompt gamma experiment at LUNA
The 3He(alpha,gamma)7Be process is a key reaction in both Big-Bang
nucleosynthesis and p-p chain of Hydrogen Burning in Stars. A new measurement
of the 3He(alpha,gamma)7Be cross section has been performed at the INFN Gran
Sasso underground laboratory by both the activation and the prompt gamma
detection methods. The present work reports full details of the prompt gamma
detection experiment, focusing on the determination of the systematic
uncertainty. The final data, including activation measurements at LUNA, are
compared with the results of the last generation experiments and two different
theoretical models are used to obtain the S-factor at solar energies.Comment: Accepted for publication in Nucl. Phys.
Comparison of the LUNA 3He(alpha,gamma)7Be activation results with earlier measurements and model calculations
Recently, the LUNA collaboration has carried out a high precision measurement
on the 3He(alpha,gamma)7Be reaction cross section with both activation and
on-line gamma-detection methods at unprecedented low energies. In this paper
the results obtained with the activation method are summarized. The results are
compared with previous activation experiments and the zero energy extrapolated
astrophysical S factor is determined using different theoretical models.Comment: Accepted for publication in Journal of Physics
- âŠ