50 research outputs found

    Biocatalytic self-assembly cascades

    Get PDF
    The properties of supramolecular materials are dictated by both kinetic and thermodynamic aspects, providing opportunities to dynamically regulate morphology and function. Herein, we demonstrate time-dependent regulation of supramolecular self-assembly by connected, kinetically competing enzymatic reactions. Starting from Fmoc-tyrosine phosphate and phenylalanine amide in the presence of an amidase and phosphatase, four distinct self-assembling molecules may be formed which each give rise to distinct morphologies (spheres, fibers, tubes/tapes and sheets). By varying the sequence or ratio in which the enzymes are added to mixtures of precursors, these structures can be (transiently) accessed and interconverted. The approach provides insights into dynamic self-assembly using competing pathways that may aid the design of soft nanostructures with tunable dynamic properties and life times

    Discharge performance of blended salt in matrix materials for low enthalpy thermochemical storage

    Get PDF
    A novel study is undertaken on low cost thermochemical storage which utilizes temperatures which are compatible with low grade renewable energy capture. The discharge performance of thermochemical storage matrix materials is assessed using a custom developed experimental apparatus which provides a means of comparing materials under scaled reactor conditions. The basic performance of three salts (CaCl2, LiNO3 and MgSO4) was investigated and their subsequent performance using layering and blending techniques established that the performance could be increased by up to 24% through the correct choice of mixing technique. Layering the CaCl2 on the LiNO3 provided the most efficient thermal release strategy and yielded a thermal storage density of 0.2 GJ/m3. The research also uniquely highlights the important finding that incorrect mixing of the materials can lead to a significant reduction in efficiency with freely mixed CaCl2 and LiNO3 possessing a storage capacity of less than 0.01 GJ/m3 as a result of chemical interactions between the deliquesced materials in close proximity. The paper has impact for the design and control of thermochemical storage systems as it clearly identifies how performance can be improved or degraded by the choice and the structuring of the materials

    Responsive organocatalysis in soft materials

    No full text
    Cells react to the environment by changing the activity of enzymes. Catalysts, such as enzymes, speed up reaction rates by lowering the activation energy of the reaction. Changing reaction rates by altering enzyme activity is used to temporarily increase the production of, for instance, a hormone or to change the mechanical properties of a cell. Control over enzyme activity is achieved in two different ways: by covalent modifications (e.g. phosphorylation) and by non-covalent interactions (allosteric enzymes). In this thesis we describe how we designed signal-responsive catalysts and used them to introduce signal response in artificial materials. Inspired by nature we developed a covalent and a noncovalent method to design catalysts that can react to signals from their environment. To design covalently protected catalysts we used self-immolative chemistry. A self-immolative molecule contains a signal-labile functional group. When this group reacts with the signal, the molecule fragments and releases a molecule of interest, in our case a catalyst.ChemE/Advanced Soft Matte

    Selective activation of organocatalysts by specific signals

    No full text
    Reminiscent of signal transduction in biological systems, artificial catalysts whose activity can be controlled by physical or chemical signals would be of high interest in the design of chemical systems that can respond to their environment. Self-immolative chemistry offers a generic method for the development of catalysts that can be activated by different signals. To demonstrate the versatility of that concept, we synthesized organocatalysts that can be activated by three different signals and that can be used to control two different reactions. In this way the organocatalyst proline is designed as a pro-catalyst that is activated either by the chemical signal H2O2, by light or by the enzyme penicillin acylase. The pro-catalysts were used to exert temporal control over the rate of an aldol reaction and a Michael reaction.ChemE/Advanced Soft Matte

    Aniline Catalysed Hydrazone Formation Reactions Show a Large Variation in Reaction Rates and Catalytic Effects

    No full text
    Hydrazone formation reactions from aldehydes and hydrazides have the remarkable qualities that they proceed in water and the kinetics can be controlled by organocatalysis. For these reasons, this class of reactions finds widespread use in biological as well as material settings. We recently reported a protected aniline catalyst for hydrazone formation that can be activated using a chemical signal. In our search to find a suitable hydrazone formation reaction to investigate the activation of this pro-catalyst, we found a wide variety in reaction rates and response to catalysis. Here we report an overview of hydrazone formation reactions, their reaction rates and response to aniline catalysis, their compatibility for kinetic analysis by UV/Vis spectroscopy, and their compatibility with the reaction environment and with the pro-catalyst pro-aniline.</p
    corecore