89 research outputs found

    Dynamically typed languages.

    Get PDF
    Dynamically typed languages such as Python and Ruby have experienced a rapid grown in popularity in recent times. However, there is much confusion as to what makes these languages interesting relative to statically typed languages, and little knowledge of their rich history. In this chapter I explore the general topic of dynamically typed languages, how they differ from statically typed languages, their history, and their defining features

    Compile-time meta-programming in converge.

    Get PDF
    Compile-time meta-programming allows programs to be constructed by the user at compile-time. Few modern languages are capable of compile-time meta-programming, and of those that do, many of the most powerful are statically typed functional languages. In this paper I present the dynamically typed, object orientated language Converge which allows compile-time meta-programming in the spirit of Template Haskell. Converge demonstrates that integrating powerful, safe compiletime meta-programming features into a dynamic language requires few restrictions to the exible development style facilitated by the paradigm

    Evolving a DSL implementation.

    Get PDF
    Domain Specific Languages (DSLs) are small languages designed for use in a specific domain. DSLs typically evolve quite radically throughout their lifetime, but current DSL implementation approaches are often clumsy in the face of such evolution. In this paper I present a case study of an DSL evolving in its syntax, semantics, and robustness, implemented in the Converge language. This shows how real-world DSL implementations can evolve along with changing requirements

    Compile-time meta-programming in a dynamically typed OO language.

    Get PDF
    Compile-time meta-programming allows programs to be constructed by the user at compile-time. Although LISP derived languages have long had such facilities, few modern languages are capable of compile-time meta-programming, and of those that do many of the most powerful are statically typed functional languages. In this paper I present the dynamically typed object orientated language Converge which allows compile-time meta-programming in the spirit of Template Haskell. Converge demonstrates that integrating powerful, safe compile-time meta-programming features into a dynamic language requires few restrictions to the flexible development style facilitated by the paradigm. In this paper I detail Converge’s compile-time meta-programming facilities, much of which is adapted from Template Haskell, contain several features new to the paradigm. Finally I explain how such a facility might be integrated into similar languages

    Model transformations in MT.

    Get PDF
    Model transformations are recognised as a vital aspect of Model Driven Development, but current approaches cover only a small part of the possible spectrum. In this paper I present the MT model transformation which shows how a QVT-like language can be extended with novel pattern matching constructs, how tracing information can be automatically constructed and visualized, and how the transformed model is pruned of extraneous elements. As MT is implemented as a DSL within the Converge language, this paper also demonstrates how a general purpose language can be embedded in a model transformation language, and how DSL development can aid experimentation and exploration of new parts of the model transformation spectrum

    The Converge programming language.

    Get PDF
    This paper details the Converge programming language, a new dynamically typed imperative programming language capable of compile-time meta-programming, and with an extendable syntax. Although Converge has been designed with the aim of implementing different model transformation approaches as embedded DSL’s in mind, it is also a General Purpose Language (GPL), albeit one with unusually powerful features. The motivation for a new approach to implementing model transformation approaches is simple: existing languages, and their associated tool-chains, lead to long and costly implementation cycles for model transformation approaches. The justification for creating a new language, rather than altering an existing one, is far less obvious— it is reasonable to suggest that, given the vast number of programming languages already in existence, one of them should present itself as a likely candidate for modification. There are two reasons why a new language is necessary to meet the aims of this paper. Firstly, in order to meet its aims, Converge contains a blend of features unique amongst programming languages; some fundamental design choices have been necessary to make these features coalesce, and imposing such choices retrospectively on an existing language would almost certainly lead to untidy results and backwards compatibility issues. Secondly, my personal experience strongly suggests that the complexity of modern languages implementations (when such implementations are available) can make adding new features a significant challenge. In short, I assert that it is easier in the context of model transformations to start with a fresh canvass than to alter an existing language. This paper comes in three main parts. The first part documents the basics of the Converge language itself;. The second part details Converge’s compile-time metaprogramming and syntax extension facilities, including a section detailing suggestions for how some of Converge’s novel features could be added to similar languages. The third part of this paper explains Converge’s syntax extension facility, and documents a user extension which allows simple UML-esque modelling languages to be embedded within Converge. As well as being a practical demonstration of Converge’s features, this facility is used extensively throughout the remainder of the paper

    Domain specific language implementation via compile-time meta-programming.

    Get PDF
    Domain specific languages (DSLs) are mini-languages that are increasingly seen as being a valuable tool for software developers and non-developers alike. DSLs must currently be created in an ad-hoc fashion, often leading to high development costs and implementations of variable quality. In this article, I show how expressive DSLs can be hygienically embedded in the Converge programming language using its compile-time meta-programming facility, the concept of DSL blocks, and specialised error reporting techniques. By making use of pre-existing facilities, and following a simple methodology, DSL implementation costs can be significantly reduced whilst leading to higher quality DSL implementations

    A Change propagating model transformation language.

    Get PDF
    Model transformations are a key component in Model Driven Development, but most approaches only allow ‘one shot' transformations to be expressed. Change propagating model transformations are those which can make suitable updates to models after an initial transformation

    Model transformations and tool integration.

    Get PDF
    Model transformations are increasingly recognised as being of significant importance to many areas of software development and integration. Recent attention on model transformations has particularly focused on the OMGs Queries/Views/Transformations (QVT) Request for Proposals (RFP). In this paper I motivate the need for dedicated approaches to model transformations, particularly for the data involved in tool integration, outline the challenges involved, and then present a number of technologies and techniques which allow the construction of flexible, powerful and practical model transformations

    The MT model transformation language.

    Get PDF
    Model transformations are recognised as a vital part of Model Driven Development, but current approaches are often simplistic, with few distinguishing features, and frequently lack an implementation. The practical diculties of implementing an approach inhibit experimentation within the paradigm. In this paper, I present the MT model transformation language which was implemented as a low-cost DSL in the Converge programming language. Although MT shares several aspects in common with other model transformation languages, an ability to rapidly experiment with the implementation has led MT to contain a number of new features, insights and dierences from other approaches
    • …
    corecore