
Dynamically Typed Languages

Laurence Tratt laurie@tratt.net
Bournemouth University, Poole, Dorset, BH12 5BB, United Kingdom.

Mar 13, 2009

Dynamically typed languages such as Python and Ruby have experienced a
rapid grown in popularity in recent times. However, there is much confusion
as to what makes these languages interesting relative to statically typed lan-
guages, and little knowledge of their rich history. In this chapter I explore the
general topic of dynamically typed languages, how they differ from statically
typed languages, their history, and their defining features.

1 Introduction

As computing is often split into software and hardware, so programming languages are
often split into dynamically and statically typed languages. The traditional, simplified,
definition of dynamically typed languages are that they do not enforce or check type-
safety at compile-time, deferring such checks until run-time. While factually true, this
definition leaves out what makes dynamically typed languages interesting—for example
that they lower development costs [Ous98] and provide the flexibility required by specific
domains such as data processing [MD04].

For many people, dynamically typed languages are the youthful face of a new style of
programming introduced in the past few years. In fact, they trace their roots back to the
earliest days of high-level programming languages in the 1950’s via Lisp [McC60]. Many
important techniques have been pioneered in dynamically typed languages from lexical
scoping [SJ75] to Just-In-Time (JIT) compilation [Ayc03], and they remain a breeding
ground for new ideas.

Systems programming – seen as ‘serious’ and thus demanding statically typed lan-
guages – is often contrasted with scripting programming – seen as ‘amateurish’ and
thus needing little more than dynamically typed languages [Ous98]. The derogative use
of the term ‘scripting’ led to the creation of other terms such as ‘latently typed’ and
‘lightweight languages’ to avoid the associated stigma. In reality the absence or pres-
ence of static typing has a number of effects on the use and applicability of a language
that simple comparisons ignore [Pau07]. So while some tasks such as low-level systems
(e.g. operating systems), resource critical systems (e.g. databases), or safety critical sys-
tems (e.g. systems for nuclear reactors) benefit from the extra rigour of statically typed

1

languages, for many other systems the associated costs outweigh the benefits [Lou08].
Gradually, dynamically typed languages have come to be seen as a valid part of the
software development toolkit, and not merely second-class citizens [SG97].

From the mainstream’s perspective, dynamically typed languages have finally come
of age. More than ever before, they are used to build widely used real-world systems,
often for the web, but increasingly for domains that were previously the sole preserve of
statically typed languages (e.g. [KG07]), often because of lower development costs and
increased flexibility [MMMP90, Nor92].

It should be noted that since there is no central authority defining dynamically typed
languages, there is great variation within those languages which are typically classified
as dynamically typed languages; nevertheless all such languages share a great deal in
common. In this chapter, I explore the general topic of dynamically typed languages, how
they differ from statically typed languages, their history, and their defining features. The
purpose of this chapter is not to be a cheer-leader for dynamically typed languages—it is
my contention that both statically typed and dynamically typed languages are required
for the increasingly broad range of tasks that software is put to. Rather this chapter
aims to explain what dynamically typed languages are and, by extension, to show where
they may and may not be useful.

2 Defining types

The lack of a widely understood definition of dynamically typed languages has resulted
in many misunderstandings about what dynamic typing is. Perhaps because of this,
alternative terms such as ‘soft typing’ are sometimes used instead. Earlier I gave the
simplified, and oft-heard, definition that a dynamically typed language is one that does
not check or enforce type-safety at compile-time. Inevitably this simplified definition
does not capture everything it should—the subtleties and variations in the use of dynamic
typing preclude a short, precise definition.

In this section, I define various terms relating to dynamically typed languages, building
up an increasingly accurate picture of what is meant by this term. Further reading on
these topics can be found in [Car97, Pie02].

2.1 Types

At an abstract level, a type is a constraint which defines the set of valid values which
conform to it. At the simplest level all apples conform to an ‘Apples’ type and all
oranges to an ‘Oranges’ type. Types often define additional constraints: red apples are
conformant to the ‘Red Apples’ type, whereas green apples are not. Types are typically
organised into hierarchies, meaning that all apples which conform to the ‘Red Apples’
type also conform to the ‘Apples’ type but not necessarily vice versa.

In programming languages, types are typically used to both classify values, and to
determine the valid operations for a given type. For example the int type in most
programming language represents integers, upon which the operations +, -, and so on
are valid. Most programming languages define a small number of built-in types, and allow

2

user programs to add new types to the system. While, abstractly, most types define an
infinite set, many built-in programming language types represent finite sets; for example,
in most languages the int type is tied to an underlying machine representation of n bits
meaning that only a finite subset of integers conform to it.

In many Object Orientated (OO) programming languages, the notions of type and
class are conflated. That is, a class ‘Apple’ which defines the attribute ‘pip’ and the
operation ‘peel’ also implicitly defines a type of the same name to which instances of
the class automatically conform to. Because classes do not always define types to which
the classes’ instances conform [CHC90, AC96], in this chapter I treat the two notions
separately. This means that, abstractly, one must define a separate type ‘Apples Type’
to which instances of the ‘Apple Class’ conform to. This definition of types may seem
unnecessarily abstract but, as shall be seen later, the notion of type is used in many
different contexts.

2.2 Compile-time vs. run-time

In this chapter, I differentiate between errors which happen at compile-time and run-
time. Compile-time errors are those which are determined by analyzing program code
without executing it; run-time errors are those that occur during program execution.

Statically typed languages typically have clearly distinct compile-time and run-time
phases, with program code converted by a compiler into a binary executable which is then
run separately. In most dynamically typed languages (e.g. Converge, Perl, and Python)
‘running’ a file both compiles and executes it. The blurring, from an external perspective,
of these two stages often leads to dynamically typed languages being incorrectly classified
as ‘interpreted’ languages. Internally, most dynamically typed languages have distinct
compilation and execution phases and therefore I use the terms compile-time and run-
time identically for both statically and dynamically typed languages.

2.3 Static typing

Before defining what dynamic typing is, it is easiest to define its ‘opposite’. Statically
typed languages are those which define and enforce types at compile-time. Consider the
following Java [GJSB00] code:

int i = 3;

String s = "4";

int x = i + s;

It uses two built-in Java types: int (representing integers) and String (Unicode char-
acter arrays). While a layman might expect that when this program is run, x will be set
to 7, the Java compiler refuses to compile this code; the compile-time error that results
says that the + operation is not defined between values of type int and String (though
see Section 2.6 to see why the opposite does in fact work). This is the essence of static
typing: code which violates a type’s definition is invalid and is not compiled. Such type
related errors can thus never occur in run-time code.

3

2.3.1 Implicit type declarations

Many statically typed languages, such as Java, require the explicit static declaration of
types. That is, whenever a type is used it must be declared before hand, hence int i
= 3 and so on.

It is often incorrectly assumed that all statically typed languages require explicit type
declarations. Some statically typed languages can automatically infer the correct type
of many expressions, requiring explicit declarations only when automatic inference by
the compiler fails. For example, the following Haskell [Jon03] code gives an equivalent
compile-time error message to its Java cousin, despite the fact that the types of i and
s are not explicitly declared:

let

i = 3

s = "4"

in

i + s

In this chapter, I define the term ‘statically typed languages’ to include both implicitly
and explicitly statically typed languages.

2.3.2 Nominal and structural typing

As stated earlier, types are typically organised into hierarchies. There are two chief
mechanisms for organising such hierarchies. Nominal typing, as found in languages
such as Java, is when an explicit named relationship between two types is recorded;
for example, a user explicitly stating that Oranges are a sub-type of Fruit. Structural
typing, as found in languages such as Haskell, is when the components of two types allow
a type system to automatically infer that they are related in some way. For example, the
Orange type contains all the components of the Fruit type, plus an extra ‘peel thickness’
component—a structurally typed system will automatically infer that all Oranges are
Fruits, but that opposite is not necessarily true. Sturctural typing as described here is
only found in statically typed languages although a similar feature – duck typing – is
found in dynamically typed languages (see Section 5.7).

2.4 Dynamic typing

Dynamic typing, at its simplest level, is when type checks are left until run-time. It is
important to note that this is different than being typeless: both statically and dynami-
cally typed languages are typed, the chief technical difference between them being when
types are enforced. For example the following Converge [Tra07] code compiles correctly
but when run, the Int.+ function raises a run-time type exception Expected arg 2 to
be conformant to Number but got instance of String:

i := 3

s := "4"

x := i + s

4

In this example one can trivially statically analyse the code and determine the eventual
run-time error. However, in general, dynamically typed languages allow code which is
more expressive than any current type system can statically check [CF91]. For example,
in non-OO languages static type systems typically prevent an individual function from
having multiple return points if each returns results of differing, incompatible, types. In
OO languages, on the other hand, the compiler statically determines the set of meth-
ods (considering subtypes) that an object method call refers to; in dynamically typed
languages the method lookup happens at run-time. This run-time lookup is known as
late binding and allows objects to dynamically alter their behaviour, allowing greater
flexibility in the manipulation of objects, the price being that lookups can fail as in the
above example.

2.5 Safe and unsafe typing

Programs written with static types are often said to be safe1 in the sense that type-
related errors caught at compile-time can not occur at run-time. However most statically
typed languages allow user programs to cast (i.e. force) values of one type to be consid-
ered as conformant to another type. For example, in C one can cast an underlying int
value to be considered as an Orange, even if this is semantically nonsensical; instances of
the two types are unlikely to share the same memory representation, and indeed may use
different quantities of memory. Programs which abuse this feature can crash arbitrarily.
Languages whose type systems can be completely overruled by the user are said to have
an unsafe typing system.

In contrast to unsafe typing, languages with a safe type system do not allow the user to
subvert it. This can be achieved either by disallowing casting (e.g. Haskell) or inserting
run-time checks to ensure that casts do not subvert the type system (e.g. Java). For
example, an object which conforms to the Red Apple type can always be cast to the
Apple type. However objects which conform to the Apple type can only be cast to the
Red Apple type if the object genuinely conforms to the Red Apple type (or one of its
sub-types); attempting to cast a Green Apple object to the Red Apple type will cause a
run-time check to fail and an exception to be raised.

The concept of safe and unsafe type systems is orthogonal to that of static and dynamic
typing. Static type systems can be safe (Java) or unsafe (C); all dynamically typed
languages of which I am aware are safe2.

2.6 Implicit type conversions

In many languages – both statically and dynamically typed – a number of implicit
type conversions (also known as ‘coercions’) are defined. This means that, in a given
context, values of an ‘incorrect’ type are automatically converted into the ‘correct’ type.

1This terminology is not universal, with ‘strong’ and ‘weak’ sometimes used in place of ‘safe’ and
‘unsafe’ respectively.

2Note that assembly languages are often classified as dynamically and weakly typed; such languages
fall considerably outside the scope of this chapter and are not considered herein.

5

C Converge Haskell Java Perl Python Ruby

Compile-time type checking • ◦ • • ◦ ◦ ◦
Run-time type checking ◦ • ◦ • • • •
Safe typing ◦ • • • • • •
Implicit typing ◦ n/a • ◦ n/a n/a n/a
Structural typing ◦ n/a • ◦ n/a n/a n/a
Run-time type errors ◦ • ◦ • • • •
Implicit type conversions • ◦ ◦ • • ◦ •

Table 1: Language comparison with respect to typing (‘n/a’ meaning ‘not applicable’).

For example, in Perl [WCO00], the addition of a number and a string evaluates to a
number as the string is implicitly converted into a number; in contrast in Python [vR03]
a run-time type error is raised. The C language defines a large number of implicit
type conversions between number types. At the extreme end of the spectrum, the TCL
language implicitly converts every type into a string [Ous94]. Implicit type conversions
need not be symmetrical; for example in Java adding a string to a number gives a compile-
time warning (see Section 2.3 for an example) while adding a number to a string returns
a string.

2.7 Terminology summary

Table 1 shows a comparison of a number of languages with respect to the terms defined
in this section. As is clearly shown, languages utilise types in almost every conceivable
combination, making the traditional ‘hard’ distinction between statically and dynami-
cally typed languages seem very simplistic. Both classes of languages are typed, the chief
technical difference between them being when types are enforced. The terms ‘statically
typed’ and ‘dynamically typed’ are the source of much confusion but are sufficiently
embedded within the community that it is unlikely that they will be superseded—hence
why I use those terms in this chapter. However readers may find it more helpful to think
of ‘static typing’ as that performed at compile-time and dynamic typing that performed
at run-time. This can help understand the real-world, where most ‘statically typed’
languages also utilise run-time type checking, and where some ‘dynamically typed’ lan-
guages allow optional compile-time type checking.

3 Disadvantages of static typing

The advantages of static typing are widely known [Bra04] and include:

• Each errors detected at compile-time prevents a run-time error.

• Types are a form of documentation / comment.

6

• Types enable many forms of optimisation.

Taken at face value, the first of these is a particularly compelling argument: why
would anyone choose to use less reliable languages? In reality the absence or presence of
static typing has a number of effects on the use and applicability of a language that are
not explained by the above. In particular, because the overwhelming body of research
on programming languages has been on statically typed languages, the disadvantages of
statically typed languages are rarely enumerated. In this section I enumerate some of
the weaknesses of static typing and why it is therefore not equally applicable to every
programming task.

3.1 Static types are inexpressive

As defined in Section 2.1, types are constraints. In practice, programming language types
most closely conform to the intuitive notion of ‘shape’ or ‘form’. Perhaps surprisingly, in
some situations types can be too permissive and in others too restrictive (for an extreme
example of this duality, see overloading in Java [AZD01]). Furthermore as static types
need to be checked at compile-time, by definition they lack run-time information about
values, further limiting their expressivity (interestingly, the types used in dynamically
typed languages are virtually identical in expressivity to those used in statically typed
languages, probably due to cultural expectations rather than technical issues).

3.1.1 Overly permissive types

Consider the following Java code which fails at run-time with a division by zero
exception:

int x = 2;

int y = 0;

int z = x / y;

Looking at this, programmers of even moderate experience can statically spot the cause
of the error: the divisor should not be zero. Java’s compiler can not statically detect this
error because the int type represents real numbers including zero; thus the above code
is statically type correct according to Java’s types. Not only is there not a type in Java
which represents the real numbers excluding zero, there is no mechanism for defining
such a type in a way that would result in equivalent code leading to a compile-time error.
This limitation is shared by virtually all statically typed languages.

As suggested above, the static types available in todays mainstream languages are
particularly inexpressive. Though research languages such as Haskell contain more ad-
vanced type systems, they still have many practical limitations. Consider the head
function, which takes a list and returns its first element; given an empty list, head raises
a run-time exception. Taking the head of an empty list is a common programming error,
and is particularly frustrating in programming languages such as Haskell whose run-time
error reporting makes tracking down run-time errors difficult [SSJ98]. It is possible to
make a new list type, and a corresponding head function, which can statically guarantee

7

that the head of an empty list will never be taken [XP98]; however this only works for
lists whose size is always statically known. Lists that are created on the basis of user
input – a far more likely scenario – are highly unlikely to be statically checkable. Trying
to use a type system in this way adds significant complexity to user programs with only
minimal benefits.

Because of the general inexpressiveness of static types, an entirely separate strand
of research tries to statically analyse programs to detect errors that escape static type
checkers (see e.g. [MR05] for work directly related to the head function).

3.1.2 Overly restrictive types

Since any practical type system needs to be both decidable and sound, they are not com-
plete; in other words, certain valid programs will be rejected by the type checker [AWL94,
Mat90]. For example, type systems provide a fixed, typically small (or even empty),
number of ways of relating types, with object orientated languages allowing types to be
defined as sub-types of others allowing a certain kind of polymorphism. However pro-
grammers often need to express relationships between types that static types prevent,
even in research languages with advanced type systems such as ML [CF91].

3.1.3 Type system complexity

From a pragmatic point of view, relatively small increases in the expressivity of static
type systems cause a disproportionately large increase in complexity [Mac93, MD04].
This can be seen clearly in Abadi and Cardelli’s theoretical work which defines static type
systems of increasing expressiveness for object orientated languages [AC96]; their latter
systems, though expressive, are sufficiently complex that, to the best of my knowledge,
they have never been implemented in any language.

3.2 Types are represented by a separate language

Since most of us are used to the presence of explicit static types, it is easy to over-
look the fact that they are represented by an entirely different language from the base
programming language. In other words, when learning the syntax and semantics of pro-
gramming X, one must also learn the syntactically and semantically distinct static type
language XT. That X and XT are, at heart, separate languages can be seen by the very
different types of errors that result from violating each’s semantics. While programming
languages have developed various mechanisms when presenting error information to aid
programmers, the error messages from static type systems are often baroque and hard
to understand [Mei07].

3.3 Type systems’ correctness

Static type systems are often the most complex parts of a programming language’s
specification. Because of this it is easy for them to contain errors which then result in
‘impossible’ run-time behaviour [Car97].

8

A famous example comes from Eiffel [Mey92], one of the first ‘mainstream’ object
orientated languages. Eiffel allows overridden methods to use subtypes of the parameters
in the superclass. Consider classes A1, A2, B1, B2, and B3, where A2 subclasses A1, and B3
subclasses B2 which subclasses B1. In object orientated languages in general, instances of
subclasses (e.g. A2) can be considered as instances of superclasses (e.g. A1); intuitively
this is because subclasses have type-identical versions of everything in the superclass
plus, optionally, extra things. Eiffel subtly changes this, so that subclasses can contain
type-compatible versions of everything in the superclass plus, optionally, extra things.
Therefore in Eiffel one can define a method m(p1:B2) (meaning that m has a parameter
p1 of type B2) in class A1 that is overridden in class A2 by m(p1:B3). If an instance of A2
is considered to be an instance of its superclass A1, then an instance of B2 can validly be
passed to A2::m which may then attempt to access an attribute present only in instances
of the subclass B3. Such covariant typing is unsafe and programs which utilise it can
crash arbitrarily at run-time despite it satisfying Eiffel’s type safety rules [Coo89].

As the Eiffel example suggests, and despite their formal veneer, the vast majority of
static type systems are not proved correct; some are sufficiently complex that a full proof
of correctness is impractical or impossible [Bra04]. Eiffel again gives us a good example
of the subtleties that type systems involve: counter-intuitively type theory shows that
A2::m could safely use super-types of the parameter types in A1::m (i.e. contravariant
typing), so A2::m(p1:B1) is type-safe [Cas95].

Flaws discovered in type systems are particularly invidious, because changes to type
systems will typically break most extant programs; for this reason, even modern versions
of Eiffel contain the above flaw (whilst alleviating it to some extent).

3.4 System ossification

Virtually all software systems are changed, often continuously, and rarely in a planned
or anticipated manner, after their original development [LB85]. It is therefore an im-
plicit requirement that software be amenable to such change, which further implies that
programming languages facilitate such change.

When changing a program, it is often desirable to change small sections at a time and
see the effect of that change on that particular part of the program, so that any new errors
can be easily related to the change; when performing such changes it is often expected
that the program as a whole may not work correctly. Static type systems often prevent
this type of development, because they require that the system as a whole is always type
correct: it is not possible to temporarily turn off static type-checking. As static types
make changing a system difficult, they inevitably cause systems to prematurely ossify,
making them harder to adapt to successive changes [NBD+05].

3.5 Run-time dynamicity

Software is increasingly required to inspect and alter its behaviour at run-time, often in
the context of critical systems that are expected to run without downtime, which must be
patched whilst still running [HN05]. Traditionally statically typed languages’ compilers

9

have discarded most information about a programs structure, its types, and so on during
the compilation process, as they are not considered central to the programs execution.
This means that most such languages are incapable of meaningful reflection [DM95]. Of
those that do (e.g. Java), the ability to change the run-time behaviour of a program is
relatively limited because of the possibility of subverting the type system. This means
that statically typed languages have typically proved difficult to use in systems that
require run-time dynamicity [NBD+05].

4 History

Dynamically typed languages have a long and varied history. While few dynamically
typed languages have had a direct impact on the programming mainstream, they have
had a disproportionate effect on programming languages in general. Perhaps because of
their inherently flexible nature, or the nature of the people attracted to them, dynami-
cally typed languages have pioneered a bewildering array of features. Thus the history
of dynamically typed languages is intertwined with that of statically typed programming
languages which, often after a significant delay, have incorporated the features pioneered
in dynamically typed languages.

To the best of my knowledge, a history of dynamically typed languages has not yet
been published, although the History of Programming Languages (HOPL) conferences3

include histories of several of the most important languages (see e.g. [SG96, Kay96,
GG96a]). A full history is far beyond the scope of this chapter. However there have been
several important innovations and trends which explain the direction that dynamically
typed languages have taken and why current dynamically typed languages take the shape
they do. The initial history of dynamically typed languages is largely of individual
languages – Lisp and Smalltalk in particular – while the more recent history sees groups
of languages – such as so-called ‘scripting’ languages including Perl, Python, and Ruby
– forging a common direction. Therefore this section enumerates, in approximately
chronological order, the major points in the evolution of dynamically typed languages.

4.1 Lisp and its derivatives

Arguably the first dynamically typed language, certainly the oldest still in use, and
without doubt the most influential dynamically typed language is Lisp [McC60]. Created
in the 1950’s, Lisp was originally intended as a practical notation for the λ-calculus
[McC78]. Lisp is notable for its minimal syntax, the smallest of any extant programming
language used in the real-world, allowing it a similarly small and uniform semantics.
This simplicity – it was quickly discovered that it is possible to specify a minimal Lisp
interpreter in a single page of Lisp code – made its implementation practical on machines
of the day. That the innovations pioneered by, and within, Lisp are too many too
mention can be inferred from its introduction of the if-then-else construct now taken
for granted in virtually all programming languages.

3http://research.ihost.com/hopl/

10

Simply labelled, Lisp is an impure functional language. To modern eyes, Lisp is
unusual because its concrete syntax uses prefix notation as can be seen from this simple
example of a Fibonacci function:

(defun fib (n)

(if (= n 0)

0

(if (= n 1)

1

(+ (fib (- n 1)) (fib (- n 2))))))

Lisp’s minimal syntax allows it to be naturally represented by Lisp lists. Since lists can
be inspected, altered, and created this led to what is arguably Lisp’s most distinctive
feature: macros. A macro is effectively a special function which, at compile-time, gen-
erates code. Macros allow users to extend a programming language in ways unforeseen
by its creators [BS00]. Macros have therefore been a key facilitator in Lisp’s continued
existence, as they allow the spartan base language to be seamlessly extended: a typical
Lisp implementation will implement most of its seemingly ‘primitive’ control structures
through macros (see Section 5.3.2). Despite many attempts, it was not until the late
1990’s that a syntactically rich, statically typed language gained a practical macro-like
facility broadly equivalent to Lisp’s (see [She98, SJ02]).

Lisp invented the concept of garbage collection [JL99] where memory allocation and
deallocation is handled automatically by the Lisp interpreter or VM. Lisp was also the
first language whose implementations made significant efforts to address performance
concerns [Gab86]; many of the resulting implementation techniques have become stan-
dard parts of subsequent language implementations.

4.1.1 Scheme

Lisp has spawned many dialects, the most significant of which is Scheme [SJ75]. For the
purposes of this chapter, Scheme can be thought of as a version of Lisp with a minimalist
aesthetic, particularly with regard to its libraries. While Lisp has seen reasonable indus-
trial usage (particularly in the 1980’s, when it was the language of choice for artificial
intelligence work), Scheme has largely been a research language, albeit a very influential
one.

Scheme was the first language to introduce closures, allowing full lexical scoping,
simplifying many types of programming such as Graphical User Interface (GUI) pro-
gramming. It also popularised the concept of continuations, allowing arbitrary control
structures to be constructed by the user [HFW84]. Scheme also showed that functions
and continuations could be treated as first-class objects. Much of the foundational work
on safe, powerful, macros was done in Scheme (see e.g. [KFFD86, CR91]).

4.2 Smalltalk

Smalltalk is Lisp’s nearest rival in influence. Put simply, Smalltalk is a small, uniform
object orientated language, heavily influenced by Lisp and Simula [DN66]. Compared

11

to later languages, Smalltalk’s syntax is small and uncomplicated (though not as min-
imalistic in nature as Lisp’s); however, in most other ways, Smalltalk-80 [GR89] (the
root of all extant Smalltalk’s) is recognisably a modern, object orientated, imperative
programming language.

Smalltalk pioneered the idea of ‘everything is an object’ where even primitive values
(integers etc.) appear as normal objects whose classes are part of the standard class hier-
archy. Smalltalk has extensive meta-programming abilities. Reflection allows programs
to query and alter themselves [Mae87]. A Meta-Object Protocol (MOP) [KdRB91] al-
lows objects to change the way they behave; from the perspective of this chapter, the
most significant of these abilities is meta-classes [FD98] (see Section 5.3.1).

In Smalltalk every object can be queried at run-time to find out its type. In common
with most object orientated languages, a Smalltalk class also implicitly defines a type
(see Section 2.1), so the ‘type’ of an object is the Class object which created it. A
meta-class is simply the type of a class. In Smalltalk the default meta-class for a class
is called Metaclass; a cycle is created in the type hierarchy so that Metaclass is its
own type. Meta-classes allow Smalltalk to present a uniform, closed world where every
object in a running system is typed by an object in the same running system. Only a
small amount of bootstrapping is needed to create this powerful illusion (later proposals
have shown how the meta-class concept can be further simplified [Coi87]).

4.3 Text processing languages

Text processing is a perennial programming task, and several languages have been wholly
or mostly designed with this in mind. This domain has been dominated by dynamically
typed languages, because the processing of unstructured data benefits greatly from the
flexibility afforded by such languages [MD04].

The first languages aimed at these tasks, most noticeably SNOBOL4 [GPP71], were
effectively Domain Specific Languages (DSLs) for text processing, and were not suit-
able for more general tasks [Gri78]. One of SNOBOL4’s direct successor languages was
Icon [GG96b], which introduced a unique expression evaluation system which dispenses
with boolean logic and allows limited backtracking within an imperative language. This
allows one to express complex string matching which can naturally evaluate multiple
possibilities.

Sed and AWK [AKW98] represent an entirely different strand of text processing
languages from SNOBOL and Icon. They can be thought of as enhanced UNIX shell
languages, with AWK extending Sed with a number of more general programming lan-
guage constructs. Perl [WCO00] represents the final evolution of this family of languages.
Reflecting its rôle as a tool for ad-hoc development, it integrates a bewildering number
of influences to an AWK base, and is notable for having arguably the most sophisticated
– or, depending on ones point of view, complex – syntax of any programming language.

Most of the above languages are not, in the widely understood sense, general purpose
languages. Icon is the most obviously general purpose language, although because of
the many idioms it encompasses, Perl has been used in many domains. Because of the
ubiquity of Sed and AWK and, in the early years of the web, Perl’s dominance of server

12

side processing, these languages have been more widely used than any other category of
dynamically typed languages.

4.4 Declarative languages

Although dynamically typed languages are often implicitly assumed to be imperative
languages, dynamic typing is equally applicable to declarative languages which, for the
purposes of this chapter, I define to mean logic and ‘pure’ functional languages (i.e.
those without side effects). Prolog [SS94] was amongst the first, and remains the most
widely used, logic language. Logic languages are very unlike ‘normal’ languages, with
the user declaring relations amongst data, and then stating a goal over this which the
language engine then attempts to solve—the order in which statements in the language
are executed is non-linear.

Pure functional languages4 have largely been confined to the research lab and have
tended to be coupled with exotic static type systems. Although Erlang [VWWA96]
started existence as a distributed variant of Prolog, it has since evolved to become one
of the few dynamically typed pure functional languages. This perhaps reflect its indus-
trial origins where it was designed to implement robust, scalable, distributed systems,
particularly telephony systems [Arm07]. Erlang is arguably the most successful pure
functional language yet with several million LoC systems. By eschewing static types, it
is able to focus on the hard issues surrounding distributed systems, including a number
of unique concepts relating to message passing and fault tolerance.

4.5 Prototyping languages

Object orientated languages derived from SIMULA such as Smalltalk are class-based
languages: objects are created by instantiating classes. While everything in Smalltalk
is an object, practically speaking classes are a very distinguished type of object from
the users perspective. Self [US87] aimed to distill the object orientated paradigm down
to its bare essentials: objects, methods, and message sends. In particular Self removed
classes as a fundamental construct; new objects are created by cloning another object.
The notion of type in Self, and other prototyping languages, is thus subtly different than
in other languages.

Because of their minimalistic nature, raw prototyping languages tend to be particularly
inefficient. Self pioneered a number of important implementation techniques [CU89]
that ultimately allowed Self to become one of the highest performing dynamically typed
languages. Much of this work has found its way into other languages, including statically
typed languages such as Java [Ayc03].

4The ‘pure’ name is a misnomer, since a truly side effect free program would be incapable of input /
output. Informally ‘pure’ is generally used to mean ‘no explicit side effects such as assignment’.

13

4.6 Modern ‘scripting’ languages

The resurgence of interest in dynamically typed languages is largely due to what were
originally dismissively called ‘scripting’ languages [Ous98], which had their roots in text
processing languages such as Sed and AWK (see Section 4.3). Unlike many of the
languages described earlier in this section, these languages were not designed with in-
novation as a primary goal, and instead emphasised consolidation and popularisation.
They have therefore focused on practical issues such as portability, and shipping with
extensive libraries. TCL [Ous94] was the first such language, which gained reasonable
popularity in large part because of its bundled GUI toolkit. Python and Ruby [TH00] –
fundamentally very similar languages once surface syntax issues are ignored – can be seen
as modernised, if less internally consistent, versions of Smalltalk. Because of their inher-
ent flexibility, such languages were initially often used to ‘glue’ other systems together,
but have increasingly seen to be useful for a wide range of programming tasks, such as
web programming tasks. Lua [Ier06] is a smaller language (both conceptually, and in its
implementation) than either Python and Ruby, and has been more explicitly designed as
an embeddable programming language; it has been used widely in the computer games
industry to allow the high-level definition and extension of games [IdFC07].

While this sub-category of dynamically typed languages has not greatly advanced the
state of the art, it has been the driving factor in validating dynamically typed languages
and making them a respected part of a programmers toolbox. Most new systems written
using dynamically typed languages use this category of languages.

5 Defining features

In previous sections I have defined the fundamental terms surrounding types and pro-
gramming languages, and presented a brief history of dynamically typed languages. In
this section I enumerate the defining features and characteristics of dynamically typed
languages, and explain why they make such languages interesting and useful. Some of
these features and characteristics have recently found their way into new statically typed
languages, either as a core feature or as library add-ons. However no statically typed
language contains all of them, nor is that likely to occur both for technical and cultural
reasons.

5.1 Simplicity

A defining characteristic of virtually all dynamically typed languages is conceptual sim-
plicity. Fundamentally dynamically typed languages are willing to trade run-time ef-
ficiency for programmer productivity. Such simplicity makes both learning and using
dynamically typed languages simpler, in general, than statically typed languages since
there are less ‘corner cases’ to be aware of. At its most extreme, Lisp’s minimal syntax
means that a full interpreter written in Lisp can fit on one page. Although most dy-
namically typed languages include as standard a greater degree of syntax and control
structures than Lisp, this general principle remains.

14

At the risk of stating the obvious, dynamically typed languages do not contain con-
structs relating to static types. This is a significant form of simplification, as although
static typing is sometimes considered to be the simple ‘tagging’ of variables with a given
type name, static typing has a much more pervasive effect on a language. For example:
static typing requires an (often significant) extension to a language’s grammar to allow
type ‘tags’ to be expressed and requires concept(s) allowing static types to be related to
one another (e.g. the Java concept of interface).

The learning curve of dynamically typed languages is considerably shallower than for
most statically typed languages. For example, in many dynamically typed languages
the classic ‘hello world’ program is simply print "Hello world!" or a minor syntactic
variant. In Java, at the other extreme, it requires a 7 line program – in a file whose name
must exactly match the class contained within it – using a bewildering array of unfa-
miliar concepts. While programming beginners obviously struggle with the complexity
that a language like Java forces on every user, it is widely known that programming
professionals find it easier to learn new dynamically typed languages [Ous98].

5.2 High level features

Dynamically typed languages pioneered what are often informally known as ‘high level
features’—those which abstract away from low-level machine concerns.

5.2.1 Built-in Data types

Whereas many statically typed languages provide only very simple built-in data types –
integers and user-defined structures – dynamically typed languages typically provide a
much richer set. The two universal data types are lists (automatically resizing arrays)
and strings (arbitrary character arrays); most dynamically typed languages also provide
support for dictionaries (also known as associative arrays or hash tables; fast key /
value lookup) and sets. These data types are typically tightly integrated into the main
language, often with their own syntax, and used consistently and frequently throughout
libraries. In contrast, most statically typed languages defer most such data types to
libraries; consequently they are rarely as consistently or frequently used.

Complex data structures are often naturally expressed using just built-in data types.
For example, the following Converge code shows how dictionaries of sets representing
room numbers and employees are naturally represented:

x := Dict{10 : Set{"Fred","Sue"}, 17 : Set{"Barry","George","Steve"}, 18 : Set{"Mark"}}

x[10].add("Andy")

x[17].del("Steve")

After the above has been evaluated the dictionary referenced by x looks as follows:

Dict{10 : Set{"Fred", "Andy", "Sue"}, 17 : Set{"Barry", "George"}, 18 : Set{"Mark"}}

Using built-in data types not only improves programmer productivity, but also execution
speed as built-in data types are highly optimised.

15

5.2.2 Automatic memory management

Manual memory management – when the programmer must manually allocate and free
memory – wastes programmer resources (consuming perhaps around 30% – 40% of a
programmer’s time [Rov85]) and is a significant source of bugs [JL99]. Lisp was the first
programming language to introduce the concept of garbage collection, meaning that
memory is automatically allocated and freed by the language run-time, largely removing
this burden from the programmer. Virtually all dynamically typed languages (and, more
recently, most statically typed languages) have followed this lead.

5.3 Meta-programming

Meta-programming is the querying, manipulation, or creation of one program by another;
often a program will perform such actions upon itself. Meta-programming can occur at
either, or both of, compile-time or run-time. Dynamically typed languages have extensive
meta-programming abilities.

5.3.1 Reflection

Formally, reflection can be split into three main aspects [BU04, MvCT+08]:

Introspection: the ability of a program to examine itself.

Self-modification: the ability of a program to alter its structure.

Intercession: the ability of a program to alter its behaviour.

For the purposes of this chapter, reflection is considered to be a run-time ability. For
example in Smalltalk, programs can perform deep introspection on objects at run-time to
determine their types (see Section 4.2). In the following Smalltalk examples ‘→’ means
‘evaluates to’:

2 + 2 → 4
(2 + 2) class → SmallInteger
(2 + 2) class class → SmallInteger class
(2 + 2) class class class → Metaclass

Self-modification allows behaviour to be added, removed, or changed at run-time. For
example in Smalltalk if a variable ie references an appropriate method (the definition of
which is left to the reader), then it can be added to the Number class, so that all numbers
can easily test whether they are odd or even:

3 isEven → Message not understood
Number addSelector: #isEven withMethod ie → Adds method isEven to Number

3 isEven → false

Unfettered run-time modification of a system is dangerous, since it can have subtle,
unintended consequences. However careful use of reflection allows programmers to bend

16

a language to their particular circumstances rather than the other way round. Most
dynamically typed languages are capable of introspection; many are capable of self-
modification; relatively few are capable of intercession (Smalltalk being one of the few).
While a few statically typed languages such as Java support the introspective aspects of
reflection, few are as consistently reflective as Smalltalk and its descendants, and none
allow the level of manipulation as shown above.

Some OO languages have a meta-object protocol (MOP) [KdRB91] which allows in-
tercession, as objects can alter the way they respond to message sends. For example
in Python objects can override the getattribute function which receives a mes-
sage name and returns an object of its choosing. The following example code (although
too simple for production use) shows how Python objects can be made to appear to
automatically have automatic ‘getter’ methods if they don’t exist:

class C(object):

x = 2

def __getattribute__(self, name):

if name.startswith("get_"):

v = object.__getattribute__(self, name[4 :])

return lambda : v

else:

return object.__getattribute__(self, name)

i = C()

print i.x

print i.get_x()

In this example, both i.x and i.get x() evaluate to the same result. Similar tricks can
be played with the setting and querying of object slots. While delving into the MOP can
easily introduce complications such as infinite loops, it can be useful, as in this example,
to allow one object to emulate the behaviour of another, allowing otherwise incompatible
frameworks and libraries to interact. Reflection also allows much deeper changes to a
system such as allowing run-time modification of whole program aspects [OC04].

5.3.2 Compile-time meta-programming

Compile-time meta-programming allows the user to interact with the compiler to allow
the construction of arbitrary program fragments. Lisp’s macros are the traditional form
of compile-time meta-programming and are used extensively to extend the minimal base
language. For example the when control structure is a specialised form of if, taking a
condition and a list of expressions; if the condition holds, when evaluates all expressions,
returning the result of the final expression. In Common Lisp [Ste90] (alongside Emacs
Lisp, one of the major extant Lisp implementations) when can be implemented as follows:

(defmacro when (cond &rest body)

‘(if ~cond (progn ~@body)))

Whenever a ‘function call’ to when is encountered during compilation, the above macro is
executed and the resultant generated code statically replaces the ‘function call’. The two

17

major features in the above are the quote ‘ which in essence returns the quoted expression
as an Abstract Syntax Tree (AST) (i.e. without evaluating it) and the insertion ~ which
inserts one Lisp AST in another.

Because macros in Lisp are often considered to rely on some of Lisp’s defining features
– in particular its minimal syntax which means that Lisp ASTs are simply lists of
lists – subsequent dynamically typed languages did not have an equivalent system. In
a rare occurrence, the statically typed languages MetaML [She98] and then Template
Haskell [SJ02] showed how a practical compile-time meta-programming system could
be naturally integrated into a modern syntactically rich language. Compile-time meta-
programming is slightly more generic in concept than traditional macros, as it allows
users to interact with the compiler, where such interactions may not always lead to the
generation of code. Converge (created by this chapters author) integrates a Template
Haskell-like system into a dynamically typed language, and uses it to implement a syntax
extension feature which allows syntactically distinct DSLs to be embedded into normal
programs.

5.3.3 Eval

Colloquially referred to by its short name, ‘eval’ refers to the ability, almost wholly con-
fined to dynamically typed languages, to evaluate arbitrary code expressions as strings
at run-time. In other words, code fragments can be received from, for example, end
users, evaluated and the resulting value used for arbitrary purposes. Note that eval
is very different from compile-time meta-programming, since expressions are evaluated
at run-time, not compile-time, and any value can be returned (not just ASTs). While
eval has many obvious downsides – allowing arbitrary code to be executed at run-time
has severe security implications – when used carefully (e.g. in configuration files) it can
reduce the need for arbitrary mini-programming languages to be implemented within a
system.

5.3.4 Continuations

Popularised in Scheme, continuations remain a relatively exotic construct, with support
only found in a handful of other languages, noticeably including Smalltalk. At a high-
level, they can be thought of as a generalised form of co-routine [HFW84] which allows a
safe way of defining ‘goto‘ points, capturing a certain part of the current program state
and allowing that part to be suspended and later resumed. Continuations are sufficiently
powerful that all other control structures can be defined in terms of them.

The low-level power of continuations, and the fact that they subvert normal expec-
tations of control flow, has meant that they have been talked about rather more than
they have been used. However they have recently shown to be a natural match for web
programming, where the back button in web browsers causes huge problems because
it is effectively an ‘undo’; most web systems give unpredictable and confusing results
if the back button is used frequently. Continuations can naturally model the chain of
resumption points that represent each point in the users browsing history, as can be

18

seen in the Smalltalk Seaside framework [DLR07]. This means that web systems respect
users intuition when the back button is used, but are not unduly difficult to develop.

5.4 Refactoring

Refactoring is the act of applying small, behaviour-preserving transformations, to a
system [FBB+99]. The general aim of refactoring is to maintain, or restore, the internal
quality of a system after a series of changes so that further changes to the system are
practical. A key part of the refactoring definition ‘behaviour-preserving’: it is vital that
refactorings do not introduce new errors into a system. In practice, two distinct types
of refactorings can be identified:

1. Small, tightly defined, and automatable refactorings. Exemplified by the ‘move
method’ refactoring where a method is moved from class C to D.

2. Larger, typically project specific, non-automatable refactorings. A typical example
is splitting a module or class into two to separate out functionality.

Statically typed languages have an inherent advantage over dynamically typed languages
in the first type of refactoring because of the extra information encoded in static types.
However static types are a burden in the second type of refactoring because they always
require the entire system to be type correct. This means that it is not possible to
make, and test, small local changes to a sub-system when such changes temporarily
violate the type system; instead the entire refactoring must be implemented in one
fell swoop which means that any resulting errors are difficult to relate to an individual
action. Counter-intuitively, perhaps, static types inhibit large-scale refactorings, tending
to ossify a program’s structure (see Section 3.4). The flexibility of dynamically typed
languages on the other hand encourages continual changes to a system [NBD+05], though
it is often wise to pair it with a suitable test suite to prevent regressions (see Section 6.2).

5.5 ‘Batteries included’ libraries

Traditionally, many statically typed languages – from Algol to Ada – have been designed
as paper standards, detailing their syntax and semantics, but typically agnostic as to
libraries. Such languages are then implemented by multiple vendors, each of which
is likely to provide different libraries. In contrast, most dynamically typed languages
– with the notable exception of the Lisp family – have been defined by their initial
implementation and its accompanying libraries. The majority of modern dynamically
typed languages (see Section 4.6) come with a rich set of standard libraries – the so-
called ‘batteries included’ approach5 [Oli07] – which encompass enough functionality
to be suitable for a majority of common programming tasks. Implicit in this is the
assumption that if the initial implementation is replaced, the standard library will be
provided in a backwards-compatible fashion; in comparison to paper-based standards, it

5While this phrase originated in the Python community, it reflects a common belief amongst most
dynamically typed languages.

19

is often difficult to distinguish between the language and its libraries. Furthermore, due
to the emphasis on a rich set of standard libraries, it is relatively easy to define new,
external libraries without requiring the installation of many dependent libraries.

As described in Section 6.1, the performance of dynamically typed languages varies
from slightly to significantly slower than statically typed languages; however, suitable
use of libraries (which are typically highly optimised) can often significantly diminish
performance issues.

5.6 Portability

Portable software is that which runs on multiple target platforms. For the purposes of
this chapter, a platform can be considered to be a combination of hardware and operating
system6. For most non-specialised purposes, users wish their software to run on as many
platforms as practical.

One way of achieving portability is to allow programs to deal, on an as-needs basis,
with known variations in the underlying platform; the other is to provide abstractions
which abstract away from the hardware and the operating system [SC92]. Since dynam-
ically typed languages aim to present a higher-level view of the world to programs (see
e.g. Section 5.2), they follow this latter philosophy. There are many examples of such
abstractions, but two in particular show the importance of abstracting away from the
hardware and the operating system. First, ‘primitive types’ such as integers will typi-
cally automatically change their representation from an efficient but limited machine type
to a variably sized container as necessary, thus preventing unintended overflow errors.
Second, file libraries provide simple open and read calls (note that garbage collection
typically closes files automatically in dynamically typed languages, so explicit calls to
close are less important) which abstract away from the wide variety of file processing
calls found in different operating systems. By providing such abstractions, dynamically
typed programs are typically more portable than most statically typed languages because
there is less direct reliance on features of the underlying platform.

5.7 Unanticipated reuse

A powerful type of reuse is when functionality is composed from smaller units in ways
that are reasonable and valid, but not anticipated by the authors of each sub-unit.
Ousterhout shows how, by using untyped text as its medium and lazy evaluation as its
process, the UNIX shell can chain together arbitrary commands with pipes [Ous98]. For
example the following command counts how many lines the word ‘dynamic’ occurs in .c
files:

find . -name "*.c" | grep -i dynamic | wc -l

The enabling factor in such reuse is the loose contracts placed on input and output data:
if the UNIX shell, for example, forced data passed through pipes to be statically typed it

6A precise definition of platform would have to cope with many ontological difficulties, such as the Java
Virtual Machine which defines a ‘platform independent’ platform of its own.

20

is unlikely that such powerful chains of commands could be created as commands would
not be as easily reusable.

Dynamically typed languages allow similar reuse to the UNIX shell, but with a subtle
twist. While most Unix shell commands demand nothing of input text (which may be
empty, all on one line etc.), and statically typed languages demand the complete typing
of all inputs, dynamically typed languages allow shades of grey in-between. Essentially
the idea is that functions should demand (and, possibly, check) the minimum of any
inputs to ensure correct functionality, thus allowing functions to operate correctly on
a wide range of seemingly unrelated input. This philosophy, while long-standing, has
recently acquired the name duck typing to reflect the intuitive notion that if an input
‘talks like a duck and quacks like a duck, it is a duck’—even if other aspects of the input
may not look like a duck [KM05]. Duck typing can be seen as the run-time, dynamically
typed equivalent of structural typing (see Section 2.3.2). A good example of the virtues
of duck typing can be found in Python where functions that deal with files often expect
only a simple read method in any input objects; this allows programs to make many
non-file objects (e.g. network streams) appear as files, thus reducing the number of cases
where specialised functions must be created for different types.

5.8 Interactivity

Virtually all dynamically typed languages are interactive, in the sense that users can
execute commands on a running instance of the system and, if desired, perform further
interactive computations on the result. Arguably the most powerful interactive systems
are for Smalltalk, where systems are generally developed within an interactive GUI
system containing both system tools (the compiler etc.) and the users code [GR89].
Most languages however provide such interactivity via a command-line interface which
allows normal expressions to be entered and immediately evaluated. This allows the
run-time system presented by the language to be explored and understood. For example
the following session shows how the Python shell can be used to explore the type system
and find out help on a method:

>>> True.__class__

<type ’bool’>

>>> True.__class__.__class__

<type ’type’>

>>> dir(True.__class__.__class__)

[’__base__’, ’__bases__’, ’__basicsize__’, ’__call__’, ’__class__’, ’__cmp__’,

’__delattr__’, ’__dict__’, ’__dictoffset__’, ’__doc__’, ’__flags__’,

’__getattribute__’, ’__hash__’, ’__init__’, ’__itemsize__’, ’__module__’, ’__mro__’,

’__name__’, ’__new__’, ’__reduce__’, ’__reduce_ex__’, ’__repr__’, ’__setattr__’,

’__str__’, ’__subclasses__’, ’__weakrefoffset__’, ’mro’]

>>> help(True.__class__.__class__.mro)

mro(...)

mro() -> list

return a type’s method resolution order

>>>

21

By providing an interactive interface, dynamically typed languages encourage explo-
ration of the run-time system, and also allow small examples to be worked on without
any ‘compile link’ overhead.

5.9 Compile-link-run cycle

In the majority of programming languages – with the notable exception of Smalltalk
and languages directly influenced by it such as Self (see Section 5.8) – programs are
stored in one or more files. In order to run a program in a statically typed language, one
must typically compile each individual file of the program, and link them together to
produce a binary, which can then be run. This process is know as the ‘compile-link-run’
cycle. Because statically typed languages are relatively complex to compile and link,
this is often a lengthy process—even on modern machines, large applications can take
several hours to compile and link from scratch. This is often a limiting factor in rapid
application development [TW07].

In contrast, most dynamically typed languages conflate the compile-link-run cycle,
allowing source files to be directly ‘run’. As compilation of individual modules is often
done on an ‘as needs’ basis, and since the compilation and linking of dynamically typed
languages is much simpler since no static types need to be checked, this means the user
experiences a much shorter compile-link-run cycle.

5.10 Run-time updates

With the increasing trend of software providing long-running services (e.g. switches,
financial applications), it is necessary to upgrade software without stopping it [HN05].
This means replacing or augmenting values in the run-time system, typically with data
and functionality in the ‘old’ system existing side-by-side with the ‘new’.

While it is possible to perform limited run-time updates with statically typed lan-
guages, the general requirement to retain the type safety of the running system (without
which random low-level crashes are likely), and the difficulty of migrating data, makes
this extremely challenging in such languages (see Section 3.5). Dynamically typed lan-
guages have two significant advantages in such situations. First reflection allows ar-
bitrary manipulation and emulation of data. Second there is no absolute requirement
to maintain type safety in the updated system as, at worse, any type errors resulting
from updating data or functionality will result in a standard run-time type error (in
contrast, subverting the type system of a statically typed language is likely to lead to a
low-level crash). Erlang makes heavy use of these features to allow extensive run-time
updating in a way that allows resultant systems to keep running for very long periods
of time [VWWA96].

22

6 Disadvantages of dynamic typing

6.1 Performance

Much has been said and written about the relative performance of various programming
languages over the years; regrettably, much has been based on superstition, supposition,
or unrepresentatively small examples. There is little doubt that, in practice, equivalent
programs in dynamically typed languages are slower than in statically typed languages.
While on certain macro benchmarks some language implementations (typically Lisp or
Smalltalk implementations) can achieve approximate parity with statically typed lan-
guages, a general rule of thumb is that the most finely tuned dynamically typed language
implementations are approximately two times slower than the equivalent statically typed
implementation7.

The performance gap between dynamically typed and statically typed languages has
lowered over recent years, in large part due to innovations surrounding JIT compila-
tion [Ayc03]—the difference in speed between dynamically typed language implementa-
tions with and without JIT compilation is typically a factor of three to five. Currently
the performance between different dynamically typed language implementations varies
wildly, with languages such as Ruby an order of magnitude slower than leading Lisp’s.
As there are few technical reasons for such differences, and given recent trends such as
common virtual machines and the awareness of the benefits of JIT compilation, it is
likely that the performance gap between implementations will narrow considerably.

Arguably more important than absolute performance measured in minutes and sec-
onds is the performance relative to requirements: in other words, does the program ‘run
fast enough?’ Thanks in part to the advancements of commodity computers, for most
real-world purposes, this question is often redundant. For certain tasks, particularly
very low-level tasks, or those on low-performance computers such as some embedded
systems, statically typed languages retain an important advantage. However it is inter-
esting to note that in certain data-intensive and performance sensitive domains such as
scientific computing dynamically typed languages have proved to be very successful (see
e.g. [CLM05, Oli07]). There are two explanations for this. First, the high-level nature
of dynamically typed languages allows programmers to focus on improving algorithms
rather than low-level coding tricks. Second, dynamically typed languages typically come
with extensive, highly optimised libraries to which the most performance critical work
is often deferred (the so-called ‘batteries included’ approach [Oli07]).

6.2 Debugging

A fundamental difference between statically and dynamically typed languages is that
the former can detect and prevent certain errors at compile-time (see Section 2.3). Logi-
cally this implies that dynamically typed programs are inherently more error-prone than

7As shown by ‘The Computer Language Benchmarks Game’ http://shootout.alioth.debian.org/
which, despite its stated limitations, is one of the best attempts to compare performance, and is
notable for the variety of language implementations it includes.

23

statically typed languages. This is potentially a real problem, hence why it is included
in the ‘disadvantages’ section. However in practice, run-time type errors in deployed
programs are exceedingly rare [TW07].

There are three main reasons why run-time type errors are rarely an issue. First, type
errors represent a small, generally immediately obvious, trivially fixed class of errors and
are thus typically detected and fixed quickly during development. Second – as shown in
Section 3 – static types do not capture many of the more important and subtle errors
that one might hoped would have been detected; such errors thus occur with equal
frequency in statically and dynamically typed programs. Third, automated testing will
tend to detect most type errors. This last point is particularly interesting. Unit testing
is when a test suite is created that can, without user intervention, be used to check that a
system conforms to the tests. Unit tests are often called ‘regression suites’ to emphasise
that they are intended to prevent errors creeping back into a system. The first unit
test suite was for Smalltalk [Bec94], but virtually all languages now have an equivalent
library or facility e.g. Java [LF03]. As this suggests, unit testing allows developers to
make guarantees of their programs that are considerably in excess of anything that static
typing can provide.

6.3 Code completion

Many modern developers make use of sophisticated Integrated Development Environ-
ments (IDEs) to edit programs. One feature associated with such tools is code com-
pletion. In particular when a variable of type T is used in a slot lookup, the functions
and attributes of the type are automatically displayed. This feature makes use of static
types to ensure that (modulo any use of reflection) its answers are fully accurate. A
fully equivalent feature is not possible for dynamically typed languages since it is not
possible to accurately determine the static type of an arbitrary expression.

6.4 Types as documentation

Since most statically typed languages force users to explicitly state the types that func-
tions consume and return, statically typed programs have an implicit form of documen-
tation within them, which happens to be machine checkable [Bra04]. There is little doubt
that this form of documentation is often useful and that dynamically typed languages
do not include it. However since it is possible to informally notate the expected types
of a function in comments, or associated documentation strings processed by external
tools, this is not a major disadvantage; furthermore some dynamically typed languages
include optional type systems (see Section 7.2) that allow code to be annotated with
type declarations when desired.

7 Variations

In the majority of this chapter I have described a homogenised picture of dynamically
typed languages, emphasising the culturally common aspects of most languages. In-

24

evitably this smooths over some important differences and variations between languages;
this section details some of these.

7.1 Non-OO and OO languages

Dynamically typed languages come in both OO (e.g. Converge, Python) and non-OO
(e.g. Lisp) flavours. Unsurprisingly, older dynamically typed languages tend to be non-
OO, with languages of the past decade or more almost exclusively OO. Interestingly, the
transition between these two schools can be seen in languages such as Python (and, to
a lesser extent, Lua) which started as non-OO languages but which were subsequently
retro-fitted with sufficient OO features that their early history is only rarely evident.
The general principles are largely the same in both cases, and in most of this chapter I
have avoided taking an exclusively OO or non-OO approach.

OO does however introduce some new differentiating factors between statically and
dynamically typed languages. In particular, static typing allows OO languages to intro-
duce new ways of method dispatch (such as method overloading) due to polymorphism.
While meta-programming allows dynamically typed languages to introduce analogous
features, they are not tightly integrated into the language, or frequently used. In part
because of this, it is generally easier to move between non-OO and OO programming
styles in dynamically typed languages such as Python than to attempt the same in a
statically typed OO language such as Java.

It is notable that dynamically typed languages have played a major part in the con-
tinued development of OO. For example, languages such as Self introduced the notable
concept of prototyping [US87]; Smalltalk has been used as the workbench for innova-
tions such as traits [SDNB03] which defines an alternative to inheritance for composing
functionality.

7.2 Optional types

In most of this chapter, dynamic and static typing have been talked about as if they are
mutually exclusive—and in most current languages this is true. While not integrated
into any mainstream language, there is a long history of work which aims to utilise the
benefits of both approaches [MD04] and blur this distinction. There are three main
ways of achieving this. First, one can add a ‘dynamic type’ to a statically typed lan-
guage, meaning that most data is statically typed, with some ‘dynamically typed’ (see
e.g. [ACPP91, Hen94]). Second, and of greater interest to this chapter, one can add an
optional type system to a dynamically typed language.

Intuitively, optional typing is easily defined: static types can be added at selected
points in a program, or discovered through type inference, and those types are statically
checked by a compiler. Optional typing thus means that portions a program can be guar-
anteed not to have type errors. Exactly how much of a program needs to be statically
typed varies between approaches e.g. some proposal require whole modules to be fully
statically typed [THF08] where others allow a free mixture of dynamic and static typ-
ing [SV08]. Optional types have two further advantages: they offer the possibility that

25

extra optimisations can be used on statically typed portions [CF91]; they also provide a
machine-checkable form of documentation within source code (see Section 6.4).

Optional typing raises two particularly important questions:

1. Are type violations fatal errors (as they are in fully statically typed languages), or
merely informative warnings?

2. Should static typing effect the run-time semantics of the system?

There is currently no agreement on either of these points. For example, as described in
Section 7.1 static typing in OO languages can affect method dispatch, meaning that OO
programs could perform method dispatch differently in statically and dynamically typed
portions. Because of this, one possibility is to make optional types truly optional, in that
their presence or absence does not effect the run-time semantics of a program [Bra04].
Taking this route also raises the possibility of using different type systems within one
program.

For the purposes of this chapter, optional typing is considered to subsume a number of
related concepts – including gradual typing, soft typing, and pluggable typing. As this
may suggest, optional typing in its various form is still relatively immature and remains
an active area of research.

7.3 Analysis

One approach to validating the correctness of a program is analysis. Static analysis in-
volves analysing the source code of a system for errors, and is capable of finding various
classes of errors, not just type errors. Static analysis is a well-established technique in
certain limited areas, such as safety critical systems, where developers are prepared to
constrain the systems they write in order to be assured of correctness. Such a philos-
ophy is at odds with that of dynamically typed languages, which emphasise flexibility.
Furthermore the inherent flexibility of dynamically typed languages would lead to a
huge increase in the search space. Therefore static analysis is unlikely to be a practical
approach for analysing dynamically typed programs. Another approach to analysis is
to perform it at run-time – dynamic analysis – when virtual machines, libraries and so
on are augmented with extra checks which aim to detect many errors at the earliest
possible point, rather than waiting until a program crashes. Although such tools are in
their infancy some, such as the Dialyzer system which performs such analysis for Erlang
systems [LS04], are in real-world use.

8 The future

Definitively predicting the future of dynamically typed languages is impossible since
there is no central authority, or single technology, which defines such languages. Nev-
ertheless certain trends are currently evident. The increasing popularity of dynamically
typed languages mean a revived interest in performance issues; while languages such as
Self have shown that dynamically typed languages can have efficient implementations,

26

few current languages have adopted such techniques. As dynamically typed languages
continue to be used in the real-world, increasingly for larger systems, users are likely
to demand better performance. Experimentation in optional typing is likely to con-
tinue, with optional type systems eventually seeing real use in mainstream languages.
The cross-fertilisation of ideas between statically and dynamically typed languages will
continue, with language features such as compile-time meta-programming crossing both
ways across the divide. It is also likely that we will see an increase in the number of
dynamically typed domain specific languages, since such languages tend by nature to be
small and ‘lightweight’ in feel.

9 Conclusions

In this chapter I detailed the general philosophy, history, and defining features of dy-
namically typed languages. I showed that, while a broad banner, such languages share
much in common. Furthermore I have highlighted their contribution to the development
of programming languages in general and, I hope, a sense of why they are currently
enjoying such a resurgence.

I am grateful to Éric Tanter who provided insightful comments on a draft of this
chapter. All remaining errors and infelicities are my own.

References

[AC96] Mart́ın Abadi and Luca Cardelli. A Theory of Objects. Springer, 1996.

[ACPP91] Mart́ın Abadi, Luca Cardelli, Benjamin Pierce, and Gordon Plotkin. Dy-
namic typing in a statically typed language. ACM Transactions on Pro-
gramming Languages and Systems, 13(2):237–268, 1991.

[AKW98] Alfred V. Aho, Brian W. Kernighan, and Peter J. Weinberger. The AWK
Programming Language. Addison Wesley, 1998.

[Arm07] Joe Armstrong. A history of Erlang. In Proc. History of programming
languages. ACM, 2007.

[AWL94] Alexander Aiken, Edward L. Wimmers, and T. K. Lakshman. Soft typing
with conditional types. In Proc. Symposium on Principles of programming
languages, pages 163–173. ACM, 1994.

[Ayc03] John Aycock. A brief history of Just-In-Time. ACM Computing Surveys,
35(2):97–113, 2003.

[AZD01] D. Ancona, E. Zucca, and S. Drossopoulou. Overloading and inheritance. In
Workshop on Foundations of Object-Oriented Languages (FOOL8), 2001.

[Bec94] Kent Beck. Simple Smalltalk testing: With patterns, 1994.
http://www.xprogramming.com/testfram.htm Accessed Jul 14 2008.

27

[Bra04] Gilad Bracha. Pluggable type systems. In OOPSLA’04 Workshop on Re-
vival of Dynamic Languages, October 2004.

[BS00] Claus Brabrand and Michael Schwartzbach. Growing languages with meta-
morphic syntax macros. In Workshop on Partial Evaluation and Semantics-
Based Program Manipulation, SIGPLAN. ACM, 2000.

[BU04] Gilad Bracha and David Ungar. Mirrors: design principles for meta-level
facilities of object-oriented programming languages. In Proc. OOPSLA,
pages 331–344. ACM, 2004.

[Car97] Luca Cardelli. Type systems. In The Computer Science and Engineering
Handbook, pages 2208–2236. 1997.

[Cas95] Giuseppe Castagna. Covariance versus contravariance: Conflict without
a cause. In ACM Transactions on Programming Languages and Systems,
pages 431–447. May 1995.

[CF91] Robert Cartwright and Mike Fagan. Soft typing. In Proceedings of the
SIGPLAN ’91 Conference on Programming Language Design and Imple-
mentation, pages 278–292, 1991.

[CHC90] William Cook, Walter Hill, and Peter Canning. Inheritance is not subtyp-
ing. In Seventeenth Symposium on Principles of Programming Languages,
pages 125–135, 1990.

[CLM05] Xing Cai, Hans Petter Langtangen, and Halvard Moe. On the performance
of the Python programming language for serial and parallel scientific com-
putations. Scientific Programming, 13(1):31–56, 2005.

[Coi87] Pierre Cointe. Metaclasses are first class: the ObjVLisp model. In Object
Oriented Programming Systems Languages and Applications, pages 156–
162, October 1987.

[Coo89] William R. Cook. A proposal for making Eiffel type-safe. The Computer
Journal, 32(4):305–311, 1989.

[CR91] William Clinger and Jonathan Rees. Macros that work. In 19th ACM
Symposium on Principles of Programming Languages, pages 155–162. ACM,
January 1991.

[CU89] C. Chambers and D. Ungar. Customization: optimizing compiler technol-
ogy for SELF, a dynamically-typed object-oriented programming language.
SIGPLAN Notices, 24(7):146–160, 1989.

[DLR07] Stéphane Ducasse, Adrian Lienhard, and Lukas Renggli. Seaside: A flex-
ible environment for building dynamic web applications. IEEE Software,
24(5):56–63, 2007.

28

[DM95] François-Nicola Demers and Jacques Malenfant. Reflection in logic, func-
tional and object-oriented programming: a short comparative study. In
Proc. IJCAI’95 Workshop on Reflection and Metalevel Architectures and
Their Applications in AI, pages 29–38, August 1995.

[DN66] Ole-Johan Dahl and Kristen Nygaard. An Algol-based simulation language.
Communications of the ACM, 9(9):671–678, 1966.

[FBB+99] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts.
Refactoring: Improving the Design of Existing Code. Addison-Wesley, 1999.

[FD98] Ira R. Forman and Scott H. Danforth. Putting Metaclasses to Work: A
New Dimension in Object-Oriented Programming. Addison-Wesley, 1998.

[Gab86] Richard P. Gabriel. Performance and Evaluation of LISP Systems. MIT
Press, 1986.

[GG96a] Ralph E. Griswold and Madge T. Griswold. History of the Icon program-
ming language. pages 599–624, 1996.

[GG96b] Ralph E. Griswold and Madge T. Griswold. The Icon Programming Lan-
guage. Peer-to-Peer Communications, third edition, 1996.

[GJSB00] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language
Specification Second Edition. Addison-Wesley, Boston, Mass., 2000.

[GPP71] R. E. Griswold, J. F. Poage, and I. P. Polonsky. The SNOBOL4 Program-
ming Language. Prentice-Hall, second edition, 1971.

[GR89] Adele Goldberg and David Robson. Smalltalk-80: The Language. Addison-
Wesley, January 1989.

[Gri78] Ralph E. Griswold. A history of the SNOBOL programming languages.
SIGPLAN Notices, 13(8):275–308, 1978.

[Hen94] Fritz Henglein. Dynamic typing: syntax and proof theory. Science of Com-
puter Programming, 22(3):197–230, 1994.

[HFW84] Christopher T. Haynes, Daniel P. Friedman, and Mitchell Wand. Con-
tinuations and coroutines. In Proc. Symposium on LISP and functional
programming, pages 293–298. ACM, 1984.

[HN05] Michael Hicks and Scott M. Nettles. Dynamic software updating. ACM
Transactions on Programming Languages and Systems, 27(6):1049 – 1096,
2005.

[IdFC07] Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and Waldemar Celes.
The evolution of Lua. In Proc. History of programming languages. ACM,
2007.

29

[Ier06] Roberto Ierusalimschy. Programming in Lua. Lua.org, second edition, 2006.

[JL99] Richard Jones and Rafael Lins. Garbage Collection: Algorithms for Auto-
matic Dynamic Memory Management. Wiley, 1999.

[Jon03] Simon Peyton Jones. Haskell 98 Languages and Libraries: The Revised
Report. Cambridge University Press, April 2003.

[Kay96] Alan C. Kay. The early history of Smalltalk. pages 511–598, 1996.

[KdRB91] Gregor Kiczales, Jim des Rivieres, and Daniel G. Bobrow. The Art of the
Metaobject Protocol. MIT Press, 1991.

[KFFD86] Eugene Kohlbecker, Daniel P. Friedman, Matthias Felleisen, and Bruce
Duba. Hygienic macro expansion. In Symposium on Lisp and Functional
Programming, pages 151–161. ACM, 1986.

[KG07] Suleyman Karabuk and F. Hank Grant. A common medium for program-
ming operations-research models. IEEE Software, 24(5):39–47, 2007.

[KM05] Andrew Koenig and Barbara E. Moo. Templates and duck typing. Dr.
Dobb’s, 2005.

[LB85] M. M. Lehman and L. A. Belady. Program Evolution: Processes of Software
Change. Academic Press, 1985.

[LF03] Johannes Link and Peter Fröhlich. Unit Testing in Java: How Tests Drive
the Code. Morgan Kaufmann, 2003.

[Lou08] Ronald P. Loui. In praise of scripting: Real programming pragmatism.
Computer, 41(7):22–26, 2008.

[LS04] Tobias Lindahl and Konstantinos Sagonas. Detecting software defects in
telecom applications through lightweight static analysis: A war story. In
Chin Wei-Ngan, editor, Programming Languages and Systems: Proceedings
of the Second Asian Symposium (APLAS’04), volume 3302 of LNCS, pages
91–106. Springer, November 2004.

[Mac93] David B. MacQueen. Reflections on standard ML. In Functional Program-
ming, Concurrency, Simulation and Automated Reasoning, volume 693 of
LNCS, pages 32–46. Springer-Verlag, 1993.

[Mae87] Pattie Maes. Concepts and experiments in computational reflection. In
Proc. OOPSLA, pages 147–155, New York, NY, USA, 1987. ACM.

[Mat90] David C. J. Matthews. Static and dynamic type checking. Advances in
database programming languages, pages 67–73, 1990.

30

[McC60] John McCarthy. Recursive functions of symbolic expressions and their com-
putation by machine (part I). Communications of the ACM, 3(4):184–195,
1960.

[McC78] John McCarthy. History of LISP. In History of programming languages,
pages 173–185. ACM, 1978.

[MD04] Erik Meijer and Peter Drayton. Static typing where possible, dynamic typ-
ing when needed: The end of the cold war between programming languages.
In OOPSLA’04 Workshop on Revival of Dynamic Languages, October 2004.

[Mei07] Erik Meijer. Confessions of a used programming language salesman. SIG-
PLAN Notices, 42(10):677–694, 2007.

[Mey92] Bertrand Meyer. Eiffel: The Language. Prentice Hall International, 1992.

[MMMP90] Ole Lehrmann Madsen, Boris Magnusson, and Birger Mølier-Pedersen.
Strong typing of object-oriented languages revisited. In Proc. OOPSLA,
pages 140–150. ACM, 1990.

[MR05] Neil Mitchell and Colin Runciman. Unfailing Haskell: A static checker for
pattern matching. In Proc. Symposium on Trends in Functional Program-
ming, pages 313–328, 2005.

[MvCT+08] Stijn Mostinckx, Tom van Cutsem, Stijn Timbermont, Elisa Gonzalez Boix,
Éric Tanter, and Wolfgang de Meuter. Mirror-based reflection in Ambi-
entTalk. Software—Practice and Experience, 2008. To appear.

[NBD+05] Oscar Nierstrasz, Alexandre Bergel, Marcus Denker, Stéphane Ducasse,
Markus Gälli, and Roel Wuyts. On the revival of dynamic languages. In
Proc. Software Composition 2005, volume 3628 of LNCS, pages 1–13, 2005.

[Nor92] Peter Norvig. Paradigms of Artificial Intelligence Programming: Case Stud-
ies in Common Lisp. Morgan Kaufmann, 1992.

[OC04] Francisco Ortin and Juan Manuel Cueva. Dynamic adaptation of applica-
tion aspects. Journal of Systems and Software, 71:229–243, May 2004.

[Oli07] T.E. Oliphant. Python for scientific computing. Computing in Science and
Engineering, 9(3):10–20, May 2007.

[Ous94] John Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, 1994.

[Ous98] John K. Ousterhout. Scripting: Higher-level programming for the 21st
century. Computer, 31(3):23–30, 1998.

[Pau07] Linda Dailey Paulson. Developers shift to dynamic programming languages.
Computer, 40(2):12–15, 2007.

31

[Pie02] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.

[Rov85] Paul Rovner. On adding garbage collection and runtime types to a strongly-
typed, statically-checked, concurrent language. Technical Report CSL-84-7,
Xerox Parc, 1985.

[SC92] Henry Spencer and Geoff Collyer. #ifdef considered harmful, or portability
experience with CNews. In Proc. of the Summer 1992 USENIX Conference,
pages 185–198, San Antionio, Texas, 1992.

[SDNB03] Nathanael Schärli, Stéphane Ducasse, Oscar Nierstrasz, and Andrew P.
Black. Traits: Composable units of behaviour? In Proc. ECOOP, volume
2743 of LNCS, pages 248–274, July 2003.

[SG96] Guy L. Steele and Richard P. Gabriel. The evolution of Lisp. pages 233–330,
1996.

[SG97] Diomidis Spinellis and V. Guruprasad. Lightweight languages as software
engineering tools. In USENIX Conference on Domain-Specific Languages,
pages 67–76, Berkeley, CA, October 1997. USENIX Association.

[She98] Tim Sheard. Using MetaML: A staged programming language. Advanced
Functional Programming, pages 207–239, September 1998.

[SJ75] Gerald Jay Sussman and Guy Lewis Steele Jr. Scheme: An interpreter for
extended lambda calculus. Technical Report AI Lab Memo AIM-349, MIT
AI Lab, December 1975.

[SJ02] Tim Sheard and Simon Peyton Jones. Template meta-programming for
Haskell. In Proceedings of the Haskell workshop 2002. ACM, 2002.

[SS94] Leon Sterling and Ehud Shapiro. The Art of Prolog. MIT Press, second
edition, March 1994.

[SSJ98] Mark Shields, Tim Sheard, and Simon Peyton Jones. Dynamic typing as
staged type inference. In Proc. Symposium on Principles of Programming
Languages, pages 289–302, January 1998.

[Ste90] Guy L. Steele, Jr. Common Lisp the Language. Digital Press, 2nd edition,
1990.

[SV08] Jeremy G. Siek and Manish Vacharajani. Gradual typing with unification-
based inference. In Dynamic Languages Symposium, 2008.

[TH00] David Thomas and Andrew Hunt. Programming Ruby: A Pragmatic Pro-
grammer’s Guide. Addison-Wesley, 2000.

[THF08] Sam Tobin-Hochstadt and Matthias Felleisen. The design and implemen-
tation of typed Scheme. SIGPLAN Notices, 43(1):395–406, 2008.

32

[Tra07] Laurence Tratt. Converge Reference Manual, July 2007.
http://www.convergepl.org/documentation/ Accessed June 3 2008.

[TW07] Laurence Tratt and Roel Wuyts. Dynamically typed languages. IEEE
Software, 24(5):28–30, 2007.

[US87] David Ungar and Randall B. Smith. Self: The power of simplicity. In Proc.
OOPSLA, pages 227–241, October 1987.

[vR03] Guido van Rossum. Python 2.3 reference manual, 2003.
http://www.python.org/doc/2.3/ref/ref.html Accessed June 3 2008.

[VWWA96] Robert Virding, Claes Wikstrom, Mike Williams, and Joe Armstrong. Con-
current Programming in Erlang. Prentice Hall, 1996.

[WCO00] Larry Wall, Tom Christiansen, and Jon Orwant. Programming Perl.
O’Reilly, third edition, 2000.

[XP98] Hongwei Xi and Frank Pfenning. Eliminating array bound checking through
dependent types. In Proc. Conference on Programming Language Design
and Implementation, pages 249–257, 1998.

33

