
Compile-time meta-programming in a dynamically typed
OO language

Laurence Tratt
Department of Computer Science, King’s College London, Strand, London, WC2R 2LS, U.K.

laurie@tratt.net

ABSTRACT
Compile-time meta-programming allows programs to be con-
structed by the user at compile-time. Although LISP de-
rived languages have long had such facilities, few modern
languages are capable of compile-time meta-programming,
and of those that do many of the most powerful are stat-
ically typed functional languages. In this paper I present
the dynamically typed object orientated language Converge
which allows compile-time meta-programming in the spirit
of Template Haskell. Converge demonstrates that integrat-
ing powerful, safe compile-time meta-programming features
into a dynamic language requires few restrictions to the flex-
ible development style facilitated by the paradigm. In this
paper I detail Converge’s compile-time meta-programming
facilities, much of which is adapted from Template Haskell,
contain several features new to the paradigm. Finally I ex-
plain how such a facility might be integrated into similar
languages.

1. INTRODUCTION
Compile-time meta-programming allows the user of a pro-
gramming language a mechanism to interact with the com-
piler to allow the construction of arbitrary program frag-
ments by user code. As Steele argues, ‘a main goal in
designing a language should be to plan for growth’ [30] –
compile-time meta-programming is a powerful mechanism
for allowing a language to be grown in ways limited only
by a users imagination. Compile-time meta-programming
allows users to e.g. add new features to a language [27] or
apply application specific optimizations [26].

The LISP family of languages, such as Scheme [20], have
long had powerful macro facilities allowing program frag-
ments to be built up at compile-time. Such macro schemes
suffered for many years from the problem of variable cap-
ture; fortunately modern implementations of hygienic mac-
ros [14] allow macros to be used safely. LISP and Scheme
programs make frequent use of macros, which are an inte-
gral and vital feature of the language. Compile-time meta-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Dynamic Languages Symposium (DLS) ’05, October 18, 2005, San
Diego, CA, USA Copyright 2005 ACM ISBN 1-59593-283-6/05/10...$5.00

programming is, at first glance, just a new name for an old
concept – macros. However, LISP-esque macros are but one
way of realizing compile-time meta-programming.

Brabrand and Schwartzbach differentiate between two main
categories of macros [6]: those which operate at the syntactic
level and those which operate at the lexing level. Scheme’s
macro system works at the syntactic level: it operates on
Abstract Syntax Trees (AST’s), which structure a programs
representation in a way that facilitates making sophisticated
decisions based on a node’s context within the tree. Macro
systems operating at the lexing level are inherently less pow-
erful, since they operate on a text string, and have little
to no sense of context. Despite this, of the relatively few
mainstream programming languages which have macro sys-
tems, by far the most widely used is C with its preprocessor
(known as the CPP), a lexing system which is well-known for
causing bizarre programming headaches due to unexpected
side effects of its use (see e.g. [9, 5, 15]).

Despite the power of syntactic macro systems, and the wide-
spread usage of the CPP, relatively few programming lan-
guages other than LISP and C explicitly incorporate such
systems (of course, a lexing system such as the CPP can be
used with other text files that share the same lexing rules).
One of the reasons for the lack of macro systems in program-
ming languages is that whilst lexing systems are recognised
as being inadequate, modern languages do not share LISP’s
syntactic minimalism. This creates a significant barrier to
creating a system which matches LISP’s power and seamless
integration [2].

Relatively recently languages such as the multi-staged Meta-
ML [31] (specifically its MacroML variant [16]) and Tem-
plate Haskell (TH) [28] have shown that statically typed
functional languages can house powerful compile-time meta-
programming facilities where the run-time and compile-time
languages are one and the same. Whereas lexing macro sys-
tems typically introduce an entirely new language to a sys-
tem, and LISP macro systems need the compiler to recognise
that macro definitions are different from normal functions,
languages such as TH distinguish only the macro call it-
self. In so doing, macros themselves can then be as any
other function within the host language, making this form
of compile-time meta-programming in some way distinct
from more traditional macro systems. Importantly these
languages also provide powerful, but usable, ways of coping
with the syntactic richness of modern languages.

49

Dynamic Languages Symposium’05, San Diego, CA, USA

Most of the languages which fall into this new category
of compile-time meta-programming languages are statically
typed functional languages. Whilst such languages have
many uses, there are many situations where other language
paradigms are useful. In my main body of research on
transforming UML-esque models [34], I make frequent use of
dynamically-typed Object Orientated (OO) languages such
as Python [35]. Dynamically typed OO languages such as
Python, Ruby [32] and Smalltalk [18] are increasingly recog-
nised as having an important rôle to play in software devel-
opment, particularly for the rapid development of software
whose requirements evolve and change as the software itself
develops [23]. Although they have traditionally been la-
belled somewhat dismissively as ‘scripting languages’, mod-
ern dynamic language implementations can often lead to
programs which are close in run-time performance to their
statically typed counterparts, whilst having a significantly
lower development cost [24].

Since languages such as MetaML and TH are concerned with
different aspects of program development (such as statically
determinable type-safety), it is less than clear whether or
not a similar compile-time system could naturally fit into
a dynamically typed language. In this paper I present the
Converge programming language, which can be seen in many
ways as a Python derivative, both syntactically and seman-
tically. However, Converge is a more experimental multi-
paradigm language than Python and its ilk. It has been
designed, in part, to explore if, and how, various language
features can be integrated together. The purpose of this
paper is not particularly to promote Converge as a new lan-
guage. Rather, it is relatively speaking less effort to experi-
ment with adding new features into a fresh language – that
is a language with no historical baggage in either its speci-
fication or implementation. Note that although Converge is
fundamentally an OO language, in the context of this paper
this fact plays relatively little significance; the major focus
is on Converge’s dynamic nature.

In this paper I explore Converge’s TH-derived compile-time
meta-programming facilities, explaining the impact this has
had on the language’s design since it is important that the
addition of such a feature does not unduly complicate other
areas of the language. I also detail Converge features which
add new power to the TH style of compile-time meta-pro-
gramming. I then assess the relative utility of compile-time
meta-programming in the context of a dynamically typed
language, since this is one of the key novelties of this work.
Finally I conclude the paper by drawing more general con-
clusions from the experience of integrating this feature into
Converge, and suggest how compile-time meta-programming
may be added to other dynamically typed languages such as
Python and Ruby.

2. CONVERGE BASICS
This section gives a brief overview of basic Converge features
that are relevant to the main subject of this paper. Whilst
this is not a replacement for the language manual [33], it
should allow readers familiar with a few other programming
languages the opportunity to quickly come to grips with the
most important areas of Converge, and to determine the
areas where it differs from other languages.

Converge’s most obvious ancestor is Python [35] resulting
in an indentation based syntax, a similar range and style
of datatypes, and general sense of aesthetics. The most
significant difference is that Converge is a slightly more
static language: all namespaces (e.g. a modules’ classes and
functions, and all variable references) are determined stat-
ically at compile-time whereas even modern Python allows
namespaces to be altered at run-time1. Converge’s scoping
rules are also different from Python’s and many other lan-
guages, and are intentionally very simple. Essentially Con-
verge’s functions are synonymous with both closures and
blocks. Converge is lexically scoped, and there is only one
type of scope (as opposed to Python’s notion of local and
global scopes). Variables do not need to be declared be-
fore their use: assigning to a variable anywhere in a block
makes that variable local throughout the block, and acces-
sible to inner blocks2. Variable references search in order
from the innermost block outwards, ultimately resulting in
a compile-time error if a suitable reference is not found. As
in Python, fields within a class are not accessible via the
default scoping mechanism: they must be referenced via the
self variable which is automatically brought into scope in
any bound function (functions declared within a class are
automatically bound functions). Although both Converge
and Python force fields to be referenced via the self vari-
able, Converge’s justification is subtly different. Since an
objects slots are not always known at compile-time, without
this feature namespaces would not be statically calculable.

Converge programs are split into modules, which contain
a series of definitions (imports, functions, classes and vari-
able definitions). Unlike Python, each module is individ-
ually compiled into a bytecode file by the Converge com-
piler convergec and linked by convergel to produce a static
bytecode executable which can be run by the Converge VM.
If a module is the main module of a program (i.e. passed
first to the linker), Converge calls its main function to start
execution. The following module shows a caching Fibonacci
generating class, and indirectly shows Converge’s scoping
rules (the i and fib cache variables are local to the func-
tions they are contained within), printing 8 when run:

import Sys

class Fib_Cache:
func init():
self.cache := [0, 1]

func fib(x):
i := self.cache.len()
while i <= x:
self.cache.append(self.cache[i - 2] + \
self.cache[i - 1])

i += 1
return self.cache[x]

func main():
fib_cache := Fib_Cache()
Sys.println(fib_cache.fib(6))

Another important, if less obvious, influence is Icon [19]. As

1Prior to version 2.1, Python’s namespaces were determined
almost wholly dynamically; this often lead to subtle bugs,
and hampered the utility of nested functions.
2Although not relevant to this paper, the nonlocal keyword
allows assignment to variables scoped in an outer block.

50

Icon, Converge is an expression-based language. Icon has
a powerful notion of expression success and failure; for the
purposes of this paper, these features are largely irrelevant
Converge’s OO features are reminiscent of Smalltalk’s [18]
everything-is-an-object philosophy, but with a prototyping
influence that was inspired by Abadi and Cardelli’s theo-
retical work [1]. The internal object model is derived from
ObjVLisp [10]. An object is said to be comprised of slots,
which are name / value pairs typically corresponding to the
functions and fields defined by the class which created the
object. Classes are provided as a useful, and common, con-
venience but are not fundamental to the object system. The
system is bootstrapped with two base classes Object and
Class, with the latter being a subclass of the former and
both being instances of Class itself3: this provides a full
metaclass ability whilst avoiding the class / metaclass di-
chotomy found in Smalltalk [8, 13]. Converge diverges from
the Smalltalk school of OO since calls to functions within
objects do not (unless the Meta-Object Protocol [21] is over-
ridden) lookup those functions within the objects class: ob-
jects are created with slots containing direct references to
the relevant functions. This allows objects to be freely and
arbitrarily manipulated. Object instantiation in Converge
is similar to Python: calling a class creates a new object.
Objects are created by the meta-classes’ new method; the
init function in the new object is then called to allow it to
initialize itself. Note that whilst namespaces are determined
statically at compile-time, slot references within objects are
resolved entirely at run-time.

As in Python, Converge modules are executed from top to
bottom when they are first imported. This is because func-
tions, classes and so on are normal objects within a Converge
system that need to be instantiated from the appropriate
builtin classes – therefore the order of their creation can be
significant e.g. a class must be declared before its use by a
subsequent class as a superclass. Note that this only effects
references made at the modules top-level – references e.g.
inside functions are not restricted thus.

3. COMPILE-TIME META - PROGRAMM-
ING

3.1 A first example
The following program is a simple example of compile-time
meta-programming, trivially adopted from its TH cousin in
[11]. expand power recursively creates an expression that
multiplies n x times; mk power takes a parameter n and cre-
ates a function that takes a single argument x and calculates
xn; power3 is a specific power function which calculates n3:

func expand_power(n, x):
if n == 0:
return [| 1 |]

else:
return [| $<<x>> * $<<expand_power(n - 1, \
x)>> |]

func mk_power(n):
return [|
func (x):
return $<<expand_power(n, [| x |])>>

3The class an object is an instance of can be determined via
its instance of slot.

|]

power3 := $<<mk_power(3)>>

The user interface to compile-time meta-programming is in-
herited directly from TH. Quasi-quote expressions [| ...

|] build abstract syntax trees - ITree’s in Converge’s termi-
nology - that represent the program code contained within
them whilst respecting Converge’s scoping rules. The splice
annotation $<<...>> evaluates its expression at compile-
time (and before VM instruction generation), replacing the
splice annotation itself with the ITree resulting from its eval-
uation. When the above example has been compiled into
VM instructions, power3 essentially looks as follows:

power3 := func (x):
return x * x * x * 1

By using the quasi-quotes and splicing mechanisms, we have
been able to synthesise at compile-time a function which can
efficiently calculate powers without resorting to recursion,
or even iteration. This example also highlights a substantial
difference from LISP derived macro schemes — Converge
functions do not need to be explicitly identified as being
macros in order that they are executed at compile-time.

This terse explanation hides much of the necessary detail
which can allow readers who are unfamiliar with similar
systems to make sense of this synthesis. In the follow-
ing sections, I explore the interface to compile-time meta-
programming in more detail, building up the picture step by
step.

3.2 Splicing
The key part of the ‘powers’ program is the splice annota-
tion in the line power3 := $<<mk power(3)>>. The top-level
splice tells the compiler to evaluate the expression between
the chevrons at compile-time, and to include the result of
that evaluation in the module for ultimate bytecode gen-
eration. In order to perform this evaluation, the compiler
creates a temporary or ‘dummy’ module which contains all
the necessary definitions up to, but excluding, the definition
the splice annotation is a part of; to this temporary mod-
ule a new splice function (conventionally called $$splice$$)
is added which contains a single expression return splice

expr . This temporary module is compiled to bytecode and
injected into the running VM, whereupon the splice function
is called. Thus the splice function ‘sees’ all the necessary def-
initions prior to it in the module, and can call them freely –
there are no other limits on the splice expression. The splice
function must return a valid ITree which the compiler uses
in place of the splice annotation.

Evaluating a splice expression leads to a new ‘stage’ in the
compiler being executed. Converge’s rules about which ref-
erences can cross the staging boundary are simple: only ref-
erences to top-level module definitions can be carried across
the staging boundary (see section 3.4). For example the
following code is invalid since the variable x will only have
a value at run-time, and hence is unavailable to the splice
expression which is evaluated at compile-time:

func f(x): $<<g(x)>>

Although the implementation of splicing in Converge is more
flexible than in TH – where splice expressions can only refer

51

Dynamic Languages Symposium’05, San Diego, CA, USA

to definitions in imported modules – it raises a new issue
regarding forward references. This is tackled in section 3.8.

Note that splice annotations within a file are executed strict-
ly in order from top to bottom, and that splice annotations
can not contain splice annotations.

3.2.1 Permissible splice locations
Converge is more flexible than TH in where it allows splice
annotations. A representative sample of permissible loca-
tions is:

Top-level definitions. Splice annotations in place of top-
level definitions must return an ITree, or a list of I-
Tree’s, each of which must be an assignment.

Function names. Splice annotations in place of function
names must return a Name (see section 3.5.2).

Class fields. Splice annotations in place of class fields can
return any normal ITree; by convention one would ex-
pect such ITree’s to represent functions or variable def-
initions.

Expressions. Splice annotations as expressions can return
any normal ITree. A simple example is $<<x>> + 2.
We saw another example in the ‘powers’ program with
power3 := $<<mk power(3)>>.

Within a block body. Splice annotations in block bodies
(e.g. a functions body) accept either a single ITree, or
a list of ITree’s. Lists of ITree’s will be spliced in as if
they were expressions separated by newlines.

A contrived example that shows the last three of these splice
locations (in order) in one piece of code is as follows:

func $<<create_a_name()>>():
x := $<<f()>> + g()
$<<list_of_exprs()>>

At compile-time, this will result in a function named by the
result of create a name and containing 1 or more expres-
sions, depending on the number of expressions returned in
the list by list of exprs.

Note that the splice expressions must return a valid ITree for
the location of a splice annotation. For example, attempt-
ing to splice in a sequence of expressions into an expression
splice such as $<<x>> + 2 results in a compile-time error.

3.3 The quasi-quotes mechanism
In the previous section we saw that splice annotations are
replaced by ITree’s. In many systems the only way to cre-
ate ITree’s is to use a verbose and tedious interface of ITree
creating functions which results in a ‘style of code [which]
plagues meta-programming systems’ [37]. LISP’s quasi-quo-
te mechanism allows programmers to construct LISP S-ex-
pressions (which, for our purposes, are analogous to ITree’s)
by writing normal code prepended by the quote ‘ nota-
tion; the resulting S-expression can be easily manipulated
by a LISP program. MetaML and, later TH, introduce
a quasi-quotes mechanism suited to syntactically rich lan-
guages. Whilst the quasi-quotes mechanism is similar in op-
eration to LISP’s quote notation, the need to deal with the

syntactic complexity of non-LISP languages raises several
challenges which were largely left unanswered in previous
meta-programming systems.

Converge inherits TH’s Oxford quotes notation [| ...|] to
represent a quasi-quoted piece of code. Essentially a quasi-
quoted expression evaluates to the ITree which represents
the expression inside it. For example, whilst the raw Con-
verge expression 4 + 2 prints 6 when evaluated, [| 4 + 2

|] evaluates to an ITree which prints out as 4 + 2. Thus
the quasi-quote mechanism constructs an ITree directly from
the users’ input - the exact nature of the ITree is of imma-
terial to the casual ITree user, who need not know that the
resulting ITree is structured along the lines of add(int(4),
int(2)).

To match the fact that splice annotations in blocks can ac-
cept sequences of expressions to splice in, the quasi-quotes
mechanism allows multiple expressions to be expressed with-
in it, split over newlines. The result of evaluating such an
expression is, unsurprisingly, a list of ITree’s.

Note that, as in TH, Converge’s splicing and quasi-quote
mechanisms cancel each other out: $<<[| x |]>> is equiv-
alent to x (though not necessarily vice versa if x does not
contain a valid ITree).

3.3.1 Splicing within quasi-quotes
In the ‘powers’ program, we saw the splice annotation being
used within quasi-quotes. The explanation of splicing in sec-
tion 3.2 would suggest that e.g. the splice inside the quasi-
quoted expression in the expand power function should lead
to a staging error since it refers to variables n and x which
were defined outside of the splice annotation. In fact, splices
within quasi-quotes work rather differently to splices outside
quasi-quotes: most significantly the splice expression itself is
not evaluated at compile-time. Instead the splice expression
is essentially copied as-is into the code that the quasi-quotes
transforms to. For example, the quasi-quoted expression [|

$<<x>> + 2 |] leads to an ITree along the lines of add(x,
int(2)) – the variable x in this case would need to contain a
valid ITree. As this example shows, since splice annotations
within quasi-quotes do not cause a change of meta-level,
variable references do not cause staging concerns.

This feature completes the cancelling out relationship be-
tween splicing and quasi-quoting: [| $<<x >> |] is equiva-
lent to x (though not necessarily vice versa if x does not
contain a valid ITree).

3.4 Basic scoping rules in the presence of quasi-
quotes

The quasi-quote mechanism can be used to surround any
Converge expression to allow the easy construction of ITree’s.
Quasi-quoting an expression has two important properties:
it fully respects lexical scoping, and avoids inadvertent vari-
able capture.

Consider first the following contrived example of module A:

func x(): return 4

func y(): return [| x() * 2 |]

52

and module B:

import A, Sys

func x(): return 2

func main(): Sys.println($<<A.y()>>)

The quasi-quotes mechanisms ensures that since the refer-
ence to x in the quasi-quoted expression in A.y refers lex-
ically to A.x, that running module B prints out 8. This
example shows one of the reasons why Converge needs to
be able to statically determine namespaces: since the ref-
erence of x in A.y is lexically resolved to the function A.x,
the quasi-quotes mechanism can replace the simple reference
with an original name that always evaluates to the slot x

within the specific module A wherever it is spliced into, even
if A is not in scope (or a different A is in scope) in the splice
location. Although the implementations differ substantially,
the concept of an original name is similar to its TH equiv-
alent; in the case of this example, the original name can be
considered to be A.x.

Some other aspects of scoping and quasi-quoting require a
more subtle approach. Consider the following (again con-
trived) example:

func f(): return [| x := 4 |]

func g():
x := 10
$<<f()>>
y := x

What might one expect the value of y in function g to be
after the value of x is assigned to it? A näıve splicing of f()
into g would mean that the x within [| x := 4 |] would
be captured by the x already in g – y would end with the
value 4. If this was the case, using the quasi-quote mech-
anism could potentially cause all sorts of unexpected inter-
actions and problems. This problem of variable capture is
well known in the LISP community, and hampered LISP
macro implementations for many years until the concept of
hygienic macros was invented [22]. A new subtlety is now
uncovered: not only is Converge able to statically determine
namespaces, but variable names can be α-renamed without
affecting the programs semantics. This is a significant devia-
tion from the Python heritage. The quasi-quotes mechanism
determines all bound variables in a quasi-quoted expression,
and preemptively α-renames each bound variable to a name
which is invalid in the normal concrete syntax. In so do-
ing, Converge guarantees that the user can not inadvertently
cause variable clashes. All references to the variable within
the quasi-quotes are updated similarly. Thus the x within
[| x := 4 |] will not cause variable capture to occur, and
the variable y in function g will be set to 10.

There is one potential catch: top-level definitions (all of
which are assignments to a variable, although syntactic sugar
generally obscures this fact) can not be α-renamed since this
would almost certainly lead to run-time ‘slot missing’ excep-
tions being raised. Converge thus does not permit top-level
definitions to be α-renamed.

Whilst the above rules explain the most important of Con-
verge’s scoping rules in the presence of quasi-quotes, up-

coming sections add extra detail to the basic scoping rules
explained in this section.

3.5 The CEI interface
At various points when compile-time meta-programming,
one needs to interact with the compiler. The Converge com-
piler is entirely contained within a package called Compiler

which is available to every Converge program. The CEI mod-
ule within the Compiler package is the officially sanctioned
interface to the Compiler, and can be imported with import

Compiler.CEI. Converge’s interface is similar to that found
in systems such as Maya [4]. Although it may seem a mere
implementation artifact, such interfaces to the compiler form
a crucial and integral part of any compile-time meta-pro-
gramming system.

3.5.1 ITree functions
Although the quasi-quotes mechanism allows the easy, and
safe, creation of many required ITree’s, there are certain
legal ITree’s which it can not express. Most such cases come
under the heading of ‘create an arbitrary number of X ’ e.g.
a function with an arbitrary number of parameters, or an
if expression with an arbitrary number of elif clauses.
In such cases the CEI interface presents a more traditional
meta-programming interface to the user that allows ITree’s
that are not expressible via quasi-quotes to be built. The
downside to this approach is that recourse to the manual is
virtually guaranteed: the user needs to know the name of the
ITree element(s) required (each element has a corresponding
function with a lower case name and a prepended ‘i’ in the
CEI interface e.g. ivar), what the functions requirements are
etc. Fortunately this interface needs to be used relatively
infrequently; all uses of it are explained explicitly in this
paper.

3.5.2 Names
We saw in section 3.2 that the Converge compiler some-
times uses names for variables that the user can not specify
using concrete syntax. Although largely an implementa-
tion detail, all such such unique names are prefixed with $$.
The same technique is used by the quasi-quote mechanism
to α-rename variables to ensure that variable capture does
not occur. However one of the by-products of the arbitrary
ITree creating interface provided by the CEI interface is that
the user is not constrained by Converge’s concrete syntax;
potentially they could create variable names which would
clash with the ‘safe’ names used by the compiler. To ensure
this does not occur, the CEI interface contains several func-
tions – similar to those in recent versions of TH – related
to names which the user is forced to use; these functions
guarantee that there can be no inadvertent clashes between
names used by the compiler and by the user.

In order to do this, the CEI interface deals in terms of in-
stances of the CEI.Name class. In order to create a variable, a
slot reference etc, the user must pass an instance of this class
to the relevant function in the CEI interface. New names can
be created by one of two functions. The name(x) function
ensures that x can not clash with unique names generated
by Converge (by checking it is not prefixed by $$), raising
an exception if it is invalid, and returning a Name otherwise.
The fresh name function guarantees to create a unique Name

53

Dynamic Languages Symposium’05, San Diego, CA, USA

each time it is called (this is the interface used by the quasi-
quotes mechanism). fresh name takes an optional argu-
ment x which, if present, is incorporated into the generated
name whilst still guaranteeing the uniqueness of the result-
ing name; this feature aids debugging by allowing the user to
trace the origins of a fresh name. As a simple example, the
expression var := CEI.ivar(CEI.fresh name()) creates a
variable with a name guaranteed by Converge to be unique
throughout the current compilation cycle, and which can
not clash with any variable specified by the user.

Note that this interface opens the door for dynamic scoping
(see section 3.7).

3.6 Lifting values
When meta-programming, one often needs to take a normal
Converge value (e.g. a string) and obtain its ITree equiva-
lent: this is known as lifting a value, and is inherited from
TH.

Consider a debugging function log which prints out the de-
bug string passed to it; this function is called at compile-time
so that if the global DEBUG BUILD variable is set to fail (es-
sentially the Converge analogue of ‘false’) there is no run-
time penalty for using its facility. The log function is thus a
safe means of performing what is often termed ‘conditional
compilation’. Noting that pass is the Converge no-op, a
first attempt at such a function is as follows:

func log(msg):
if DEBUG_BUILD:
return [| Sys.println(msg) |]

else:
return [| pass |]

This function fails to compile: the reference to the msg vari-
able causes the Converge compiler to raise the error Var

‘msg’ is not in scope when in quasi-quotes (consid-

er using $<<CEI.lift(msg)>>. Changing the segment in
question to the following gives the correct solution:

return [| Sys.println($<<CEI.lift(x)>>) |]

What has happened here is that the string value of x is trans-
formed by the lift function into its abstract syntax equiva-
lent. Constants are automatically lifted by the quasi-quotes
mechanism: the two expressions [| $<<CEI.lift("str")>>

|] and [| "str" |] are therefore equivalent.

Converge’s refusal to lift the raw reference to msg in the
original definition of log is a significant difference from TH,
whose scoping rules would have implicitly lifted msg. Al-
though one might consider TH’s implicit lifting somewhat
bad design, TH’s rules do have the virtue of being uniform.
However in an imperative language such as Converge, vari-
able assignment introduces a tricky corner case. To explain
the difference, assume the log function is rewritten to in-
clude the following fragment:

return [|
msg := "Debug: " + $<<CEI.lift(msg)>>
Sys.println(msg)

|]

In a sense, the quasi-quotes mechanism can be considered
to introduce its own block: the assignment to the msg vari-
able forces it to be local to the quasi-quote block. This

needs to be the case since the alternative behaviour is non-
sensical: if the assignment referenced to the msg variable
outside the quasi-quotes then what would the effect of splic-
ing in the quasi-quoted expression to a different context be?
The implication of this is that referencing a variable within
quasi-quotes would have a significantly different meaning if
the variable had been assigned to within the quasi-quotes
or outside it. Whilst it is easy for the Converge compiler
writer to determine that a given variable was defined out-
side the quasi-quotes and should be automatically lifted in
(or vice versa), from a user perspective TH’s behaviour can
be unnecessarily confusing. Converge’s quasi-quote mecha-
nism originally had the same behaviour in this respect as
TH, but this resulted in fragile and hard to follow code. To
avoid such problems, Converge forces variables defined out-
side of quasi-quotes to be explicitly lifted into it. This also
maintains a simple symmetry with Converge’s main scoping
rules: assigning to a variable in a block makes it local to
that block.

3.7 Dynamic scoping
Sometimes the quasi-quote mechanisms automatic α-renam-
ing of variables is not what is needed. For example consider
a function swap(x, y) which should swap the values of two
variables. In such a case, we want the result of the splice
to capture the variables in the spliced environment. The
following definition of swap expects to be passed two ITree’s
representing variables:

func swap(x, y):
return [|
temp := $<<x>>
$<<x>> := $<<y>>
$<<y>> := temp

|]

It is initially tempting to try and use this function as follows:

a := 10
b := 20
$<<swap([| a |], [| b |])>>

However this causes a staging error since the a and b in
the quasi-quotes do not refer to a bound variable either
inside or outside the quasi-quotes when the splice expres-
sion is evaluated (the latter would be invalid anyway, due to
Converge’s lifting rules; see section 3.6). swap needs to be
passed ITree’s representing variable names, not references to
variables. ITree’s representing variable names can be con-
structed by the idiom CEI.ivar(CEI.name(x)). When such
a variable name is spliced into a quasi-quotes it will not be
renamed, thereby allowing dynamic scoping. A correct call
to swap thus looks as follows:

$<<swap(CEI.ivar(CEI.name("a")), \
CEI.ivar(CEI.name("b")))>>

In this case, the variable names constructed by the CEI in-
terface are first spliced into the quasi-quotes in the swap

function. The resulting ITree from the quasi-quotes is then
spliced in place of the swap call, and the variable names
dynamically capture the a and b variables.

Dynamic scoping also tends to be useful when a quasi-quoted
function is created piecemeal with many separate quasi-
quote expressions. In such a case, variable references can
only be resolved successfully when all the resulting ITree’s

54

are spliced together since references to the function’s param-
eters and so on will not be determined until that point. Since
it is highly tedious to continually write CEI.ivar(CEI.name(
"foo")), Converge provides the special syntax &foo which
is equivalent. Notice that this notation prefixes a variable
name — it has nothing to do with the value the variable
contains. Using this syntax also allows swap to be called in
the following less cumbersome fashion:

$<<swap([| &a |], [| &b |])>>

3.8 Forward references and splicing
In section 3.2 we saw that when a splice annotation outside
quasi-quotes is encountered, a temporary module is created
which contains all the definitions up to, but excluding, the
definition holding the splice annotation. This is a very useful
feature since compile-time functions used only in one mod-
ule can be kept in that module. However this introduces a
real problem involving forward references. A forward ref-
erence is defined to be a reference to a definition within a
module, where the reference occurs at an earlier point in
the source file than the definition. If a splice annotation
is encountered and compiles a subset of the module, then
some definitions involved in forward references may not be
included: thus the temporary module will fail to compile,
leading to the entire module not compiling. Worse still, the
user is likely to be presented with a highly confusing error
telling them that a particular reference is undefined when,
as far as they are concerned, the definition is staring at them
within their text editor. TH avoids this problem by allowing
splice expressions to only refer to the import statements in
its surrounding modules’ contents. Converge’s solution to
the problem of forward references thus has no precedent in
TH.

Consider the following contrived example:

func f1(): return [| 7 |]

func f2(): x := f4()

func f3(): return $<<f1()>>

func f4(): pass

If f2 is included in the temporary module created when
evaluating the splice annotation in f3, then the forward ref-
erence to f4 will be unresolvable.

The solution taken by Converge ensures that, by including
only a minimal subset of definitions in the temporary mod-
ule, most forward references do not raise a compile-time er-
ror. We saw in section 3.4 that the quasi-quotes mechanism
uses Converge’s statically determined namespaces to calcu-
late bound variables. That same property is now used to
determine an expressions free variables.

When a splice annotation is encountered, the Converge com-
piler does not immediately create a temporary module. First
it calculates the splice expressions’ free variables; any pre-
viously encountered definition which has a name in the set
of free variables is added to a set of definitions to include.
These definitions themselves then have their free variables
calculated, and again any previously encountered definition
which has a name in the set of free variables is added to

the set of definitions to include. This last step is repeated
until an iteration adds no new definitions to the set. At this
point, Converge then goes back in order over all previously
encountered definitions, and if the definition is in the list of
definitions to include, it is added to the temporary module.
Recall that the order of definitions in a Converge file can be
significant (see section 2): this last stage ensures that def-
initions are not reordered in the temporary module. Note
also that free variables which genuinely do not refer to any
definitions (i.e. a mistake on the part of the programmer)
will pass through this scheme unmolested and will raise an
appropriate error when the temporary module is compiled.

Using this method, the temporary module that is created
and evaluated for the example looks as follows:

func f1(): return [| 7 |]

func $$splice$$(): return f1()

There are thus no unresolvable forward references in this
example. Notice that Converge’s approach to the forward
reference problem is not a completely general solution since
some forward references (particularly those to definitions be-
yond a splice site) are inherently unresolvable. Converge’s
approach is intended to significantly reduce the problem to
the point that any unresolvable references are the result of
programmer error.

There is a secondary, but significant, advantage to this meth-
od: since it reduces the number of definitions in temporary
modules it can lead to an appreciable saving in compile time,
especially in files containing multiple splice annotations.

3.9 Error reporting
Perhaps the most significant unresolved issue in compile-
time meta-programming systems relates to error reporting
[11]. Although Converge does not have complete solutions to
all issues surrounding error reporting, it does contain some
rudimentary features which may give insight into the form
of more powerful error reporting features both in Converge
and other compile-time meta-programming systems.

The first aspect of Converge’s error reporting facilities re-
lates to exceptions. When an exception is raised, detailed
stack traces are printed out allowing the user to inspect
the sequence of calls that led to the exception being raised.
These stack traces differ from those found in e.g. Python in
that each level in the stack trace displays the file name, line
number and column number that led to the error. Display-
ing the column number allows users to make use of the fine-
grained information to more quickly narrow down the precise
source of an exception. Converge is able to display such de-
tailed information because when it parses text, it stores the
source code information: the file name, and character offset
within the file of each token. Tokens are ordered into parse
trees; parse trees are converted into ASTs; ASTs are even-
tually converted into VM instructions. At each point in this
conversion, the source code information is retained. Thus
every VM instruction in a binary Converge program has a
corresponding debugging entry which records which file and
character offset the VM instruction relates to. Whilst this
does require more storage space than simpler forms of error
information, the amount of extra space required is insignifi-

55

Dynamic Languages Symposium’05, San Diego, CA, USA

cant in the face of the vast storage resources now common-
place.

If Converge were a ‘normal’ programming language – i.e.
sans compile-time meta-programming – then there would
be no need to record the relation of each individual VM
instruction, nor the source file that debugging entries are
related to. However in order that error reporting in the
presence of compile-time meta-programming is useful, such
information must be recorded much differently in Converge.
To see why this is the case, consider a file A.cv:

func f():
return [| 2 + "3" |]

and a file B.cv:

import A

func main():
$<<A.f()>>

When the quasi-quoted code in A.f is spliced in, and then
executed an exception will be raised about the attempted
addition of an integer and a string. The exception that
results from running B is as follows:

Traceback (most recent call last):
File "A.cv", line 2, column 13, in main

Type_Exception: Expected instance of Int, but
got instance of String.

The fact that the A module is pinpointed as the source of
the exception may initially seem surprising, since the code
raising the exception will have been spliced into the B mod-
ule. This is however a deliberate design choice in Converge.
Although the code from A.f has been spliced into B.main,
when B is run the quasi-quoted code retains the information
about its original source file, and not its splice location. To
the best of my knowledge, this approach to customising er-
ror reporting in the face of compile-time meta-programming
is unique.

3.9.1 Customizing source code information
Converge allows customization of the error-reporting infor-
mation stored about a given ITree. Each ITree object has
two slots src file and src offset which record the source
file name and character offset that the ITree object relates
to. I now assume the existence of a simple function up-

date src info which takes three arguments: an ITree, a
source file name, and a character offset. update src info

should copy the input ITree, and as it does so alter the
source info of the copied ITree to that provided by the user.
By updating an ITree’s source code information, the user
can change the information printed in a stack traces.

However, whilst the simple definition of update src info

is initially appealing, it has an unfortunate property that
limits its use. Consider the following contrived example:

func f():
return update_src_info([| 2 + "3" |], "X.cv", \
39)

func g():
return update_src_info([| 2 * $<<f()>> |], \
"Y.cv", 78)

A user calling g would be forgiven for assuming that the

ITree returned to them will contain some elements whose
source code information relates to X.cv, and some which
relate to Y.cv. However, the last call to update src info

always ‘wins’, and thus the resulting ITree from g will have
all its source code information relating to Y.cv. The reason
for this is that the ITree created by f is spliced into the ITree
created by g before the update src info function is called.
In other words, the information that the ITree has been con-
structed in two parts is entirely lost to the update src info

function. It should be noted that it would not be possible to
work around this problem by modifying update src info to
only alter the source code information of ‘top level elements’
since ITree’s are nested to an arbitrary depth.

The behaviour of the update src info is thus limiting be-
cause its coarse-grained operation works particularly badly
when ITree’s are built up in stages, or by separate pieces
of code, each of which wish to record different source code
information.

3.9.2 Fine grained customization of source code in-
formation

In a TH-esque system only coarse-grained customization
of source code information is possible. In Converge, fine
grained customization of source code information is possi-
ble. This is achieved by adding a feature to Converge which
is not present in TH: nested quasi-quotes. Essentially an
outer quasi-quote returns the ITree of the code which would
create the ITree of the nested quasi-quote. For example, us-
ing the pp function to pretty-print an ITree, the following
nested code:

Sys.println([| [| 2 + "3" |] |].pp())

results in the following output:

CEI.ibinary_add(CEI.iint(2, "ct.cv", 484),
CEI.istring("3", "ct.cv", 488), "ct.cv", 486)

Nested quasi-quotes provide a facility which allows users to
analyse the ITrees that plain quasi-quotes generate: one can
see in the above that each ITree element contains a reference
to the file it was contained within (ct.cv in this case) and
to the offset within the file (484 and so on). As this out-
put shows, the ITree creating functions in the CEI module
(see section 3.5) have a standard form. Each one takes zero
or more initial arguments relative to the ITree item it cre-
ates, and ends with two mandatory arguments denoting the
source file the ITree element is related to, and the character
offset of the ITree element in that file.

The importance of nested quasi-quotes is they allow one to
inspect and alter the code which creates an ITree i.e. a meta-
level removed from the ITree itself. This means that one can
manipulate the quasi-quoted code in isolation, without hav-
ing to worry about other ITree’s which might be spliced in
when the quasi-quotes are actually executed. This is illus-
trated by changing the example code above to the following:

Sys.println([| [| 2 + $<<h()>> |] |].pp())

where f is an arbitrary function which returns a valid ITree.
This code results in the following output:

CEI.ibinary_add(CEI.iint(2, "ct.cv", 129), \
h(), "ct.cv", 131)

56

In a sense the nested quasi-quotes can be seen to defer the
execution of h allowing the user to manipulate the ITree
before the ITree from h is included. h will be when the
result of the nested quasi-quotes is spliced into a program,
thus ‘cancelling out’ one degree of nesting.

In order to facilitate working with nested quasi-quotes, the
CEI module provides a function src info to var which given
an ITree representing quasi-quoted code essentially copies
the ITree replacing the source code file and character offsets
with variables src file and src offset. This new ITree is
then embedded in a quasi-quoted function which takes two
arguments src file and src offset. When the user splices
in and then calls this function, they update the ITree’s rela-
tion to source code files and offsets. Using this function in
the following fashion:

Sys.println(CEI.src_info_to_var(\
[| [| 2 + "3" |] |]).pp())

results in the following output:

unbound_func (src_file, src_offset){
return CEI.ibinary_add(CEI.iint(2, \
src_file, src_offset), CEI.istring("3", \
src_file, src_offset), src_file, src_offset)

}

As an example of using this in practise, the original defini-
tions of f and g would be changed to the following:

func f():
return $<<CEI.src_info_to_var([| [| 2 + \
"3" |] |])>>("X.cv", 39)

func g():
return $<<CEI.src_info_to_var([| [| 2 * \
$<<f()>> |] |])>>("Y.cv", 78)

Whilst this is perhaps slightly clumsy, it is interesting to
note that by adding only the simple, uniform concept of
nested quasi-quotes, complex manipulation of the meta-sys-
tem is possible. In this case, this extra access to the meta-
system has allowed fine-grained source code information to
be controlled: the ITree generated by g will contain some el-
ements whose source code information references X.cv and
some who reference Y.cv. Note that quasi-quotes can be
nested to arbitrary levels – as this may suggest, nested
quasi-quotes expose that Converge’s compile-time meta-pro-
gramming is an analogue of ObjVLisp’s ‘golden braid’ data
model [10].

Converge’s current approach is not without its limitations.
Its chief problem is that it can only relate one source code lo-
cation to any given VM instruction. There is thus an ‘either
/ or’ situation in that the user can choose to record either
the definition point of the quasi-quoted code, or change it
to elsewhere (e.g. to record the splice point). It would be of
considerable benefit to the user if it is possible to record all
locations which a given VM instruction relates to. Assum-
ing the appropriate changes to the compiler and VM, then
the only user-visible change would be that src info to var

would append src file and src offset information to el-
ements in a given ITree, rather than overwriting the infor-
mation it already possessed.

4. COMPILE-TIME META - PROGRAMM-
ING IN USE

In this paper we have seen several uses of compile-time meta-
programming. There are many potential uses for this fea-
ture, many of which are too involved to detail in the avail-
able space. For example, one of the most exciting uses of the
feature has been in conjunction with Converge’s extendable
syntax feature (see section 7), allowing powerful DSL’s to
be expressed in an arbitrary concrete syntax. One can see
similar work involving DSL’s in e.g. [26, 11].

In this section I show two seemingly mundane uses of com-
pile-time meta-programming: conditional compilation and
compile-time optimization. Although mundane in some sen-
ses, both examples open up potential avenues not currently
available to other dynamically typed OO languages.

4.1 Conditional compilation
Whereas languages such as Java attempt to insulate their
users from the underlying platform an application is run-
ning on, languages such as Python and Ruby allow the user
access to many of the lower-level features the platform pro-
vides. Many applications rely on such low-level features be-
ing available in some fashion. However for the developer who
has to provide access to such features a significant problem
arises: how does one sensibly provide access to such fea-
tures when they are available, and to remove that access
when they are unavailable?

The log function on page 54 was a small example of con-
ditional compilation. Let us consider a simple but realistic
example that is more interesting from an OO perspective.
The POSIX fcntl (File CoNTrol) feature provides low-level
control of file descriptors, for example allowing file reads and
writes to be set to be non-blocking; it is generally only avail-
able on UNIX-like platforms. Assume that we wish to pro-
vide some access to the fcntl feature via a method within
file objects; this method will need to call the raw function
within the provided fcntl module iff that module is avail-
able on the current platform.

In Python for example, there are two chief ways of doing this.
The first mechanism is for a File class to defer checking for
the existence of the fcntl module until the fcntl method
is called, raising an exception if the feature is not detected
in the underlying platform. Callers who wish to avoid use of
the fcntl method on platforms lacking this feature must use
catch the appropriate exception. This rather heavy handed
solution goes against the spirit of duck typing [32], a practise
prevalent in languages such as Ruby and Python. In duck
typing, one essentially checks for the presence of a method(s)
which appear to satisfy a particular API without worrying
about the type of the object in question. Whilst this is
perhaps unappealing from a theoretical point of view, this
approach is common in practise due to the low-cost flexibil-
ity it leads to. To ensure that duck typing is possible in our
fcntl example, we are forced to use exception handling and
the dynamic selection of an appropriate sub-class:

try:
import fcntl
_HAVE_FCNTL = True

except exceptions.ImportError:
_HAVE_FCNTL = False

57

Dynamic Languages Symposium’05, San Diego, CA, USA

class Core_File:
...

if _HAVE_FCNTL:
class File(Core_File):
def fcntl(op, arg):
return fcntl.fcntl(self.fileno(), op, arg)

else:
class File(Core_File):
pass

Whilst this allows for duck typing, this idiom is far from
elegant. The splitting of the File class into a core compo-
nent and sub-classes to cope with the presence of the fcntl

functionality is somewhat distasteful. This example is also
far from scalable: if one wishes to use the same approach
for more features in the same class then the resultant code
is likely to be highly fragile and complex.

Although it appears that the above idiom can be encoded
largely ‘as is’ in Converge, we immediately hit a problem due
to the fact that module imports are statically determined.
Thus a direct Converge analogue would compile correctly
only on platforms with a fcntl module. However by using
compile-time meta-programming one can create an equiv-
alent which functions correctly on all platforms and which
cuts out the ugly dynamic sub-class selection.

The core feature here is that class fields are permissible splice
locations (see section 3.2.1). A splice which returns an ITree
that is a function will have that function incorporated into
the class; if the splice returns pass as an ITree then the
class is unaffected. So at compile-time we first detect for the
presence of a fcntl module (the VM.loaded module names

function returns a list containing the names of all loaded
modules); if it is detected, we splice in an appropriate fcntl
method otherwise we splice in the no-op. This example make
use of two hitherto unencountered features. Firstly, using an
if construct as an expression requires a different syntax (to
work around parsing limitations associated with indentation
based grammars); the construct evaluates to the value of the
final expression in whichever branch is taken, failing if no
branch is taken4. Secondly the modified Oxford quotes [d|

...|] – declaration quasi-quotes – act like normal quasi-
quotes except they do not α-rename variables in the top-
level of the quasi-quotes; declaration quotes are typically
most useful at the top-level of a module. The Converge
example is as follows:

$<<if VM.loaded_module_names().contains("FCntl") {
[d|
import FCntl
_HAVE_FCNTL := 1

|]
}
else {
[d| _HAVE_FCNTL := 0 |]

}>>

class File:
$<<if _HAVE_FCNTL {
[|
func fcntl(op, arg):

4Note that failure in Converge is a concept inherited from
Icon, and is not equivalent to raising an exception.

return FCntl.fcntl(self.fileno(), op, \
arg)

|]
}
else {
[| pass |]

}>>

Although this example is simplistic in many ways, it shows
that compile-time meta-programming can provide a concep-
tually neater solution than any purely run-time alternative
since it allows related code fragments to be kept together.
It also provides a potential solution to related problems.
For example often portability related code in dynamically
typed OO languages consists of many if statements which
perform different actions depending on a condition which
relates to querying the platform in use. Such code can be-
come a performance bottleneck if called frequently within a
program. The use of compile-time meta-programming can
lead to a zero-cost run-time overhead. Perhaps significantly,
the ability to tune a program at compile-time for portability
purposes is the largest single use of the C preprocessor [15] –
compile-time meta-programming of the sort found in Con-
verge not only opens similar doors for dynamically typed
OO languages, but allows the process to occur in a far safer,
more consistent and more powerful environment than the C
preprocessor.

4.2 Run-time efficiency
In this section I present the Converge equivalent of the TH
compile-time printf function given in [28]. Such a function
takes a format string such as "%s has %d %s" and returns
a quasi-quoted function which takes an argument per ‘%’
specifier and intermingles that argument with the main text
string. For the purposes of this paper, I deal only with
decimal numbers %d and strings %s.

The motivation for a TH printf is that such a function is not
expressible in base Haskell. Although Converge functions
can take a variable number of arguments (as Python, but
unlike Haskell), having a compile-time version still has two
benefits over its run-time version: any errors in the format
string are caught at compile-time; an efficiency boost.

This example assumes the existence of a function split for-

mat which given a string such as "%s has %d %s" returns a
list of the form [PRINTF STRING, " has ", PRINTF INT, "

", PRINTF STRING] where PRINTF STRING and PRINTF INT

are constants.

First we define the main printf function which creates the
appropriate number of parameters for the format string (of
the form p0, p1 etc.). Parameters must be created by the
CEI interface. An iparam has two components: a variable,
and a default value (the latter can be set to null to sig-
nify the parameter is mandatory and has no default value).
printf then returns an anonymous quasi-quoted function
which contains the parameters, and a spliced-in expression
returned by printf expr:

func printf(format):
split := split_format(format)
params := []
i := 0
for part := split.iterate():

58

if part == PRINTF_INT | part == PRINTF_STRING:
params.append(CEI.iparam(CEI.ivar(\
CEI.name("p" + i.to_str())), null))

i += 1
return [|
func ($<<params>>):
Sys.println($<<printf_expr(split, 0)>>)

|]

printf expr is a recursive function which takes two param-
eters: a list representing the parts of the format string yet
to be processed; an integer which signifies which parameter
of the quasi-quoted function has been reached.

func printf_expr(split, param_i):
if split.len() == 0:
return [| "" |]

param := CEI.ivar(CEI.name("p" + \
param_i.to_str()))

if split[0].conforms_to(String):
return [| $<<CEI.lift(split[0])>> + \
$<<printf_expr(split[1 :], param_i)>> |]

elif split[0] == PRINTF_INT:
return [| $<<param>>.to_str() + \
$<<printf_expr(split[1 :], \
param_i + 1)>> |]

elif split[0] == PRINTF_STRING:
return [| $<<param>> + $<<printf_expr(\
split[1 :], param_i + 1)>> |]

Essentially, printf expr recursively calls itself, each time
removing the first element from the format string list, and
incrementing the param i variable iff a parameter has been
processed. This latter condition is invoked when a string or
integer ‘%’ specifier is encountered; raw text in the input is
included as is, and as it does not involve any of the functions
parameters, does not increment param i. When the format
string list is empty, the recursion starts to unwind.

When the result of printf expr is spliced into the quasi-
quoted function, the dynamically scoped references to pa-
rameter names in printf expr become bound to the quasi-
quoted functions’ parameters. As an example of calling this
function, $<<printf("%s has %d %s")>> generates the fol-
lowing function:

func (p0, p1, p2):
Sys.println(p0 + " has " + p1.to_str() \
+ " " + p2 + "")

so that evaluating the following:

$<<printf("%s has %d %s")>>("England", 39, \
"traditional counties")

results in England has 39 traditional counties being
printed to screen.

This definition of printf is simplistic and lacks error re-
porting, partly because it is intended to be written in a
similar spirit to its TH equivalent. Converge comes with a
more complete compile-time printf function as an example,
which uses an iterative solution with more compile-time and
run-time error-checking. Simple benchmarking of the latter
function reveals that it runs nearly an order of magnitude
faster than its run-time equivalent5 – a potentially signifi-
cant gain when a tight loop repeatedly calls printf.

5This large differential is in part due to the fact that the
current Converge VM imposes a relatively high overhead on
function application.

4.3 Compile-time meta-programming costs
Although compile-time meta-programming has a number of
benefits, it would be näıve to assume that it has no costs
associated with it. However although Converge’s features
have been used to build several small programs, and two
systems of several thousand lines of code each, it will require
a wider range of experience from multiple people working in
different domains to make truly informed comments in this
area.

One thing is clear from experience with LISP: compile-time
meta-programming in its rawest form is not likely to be
grasped by every potential developer [25]. To use it to its
fullest potential requires a deeper understanding of the host
language than many developers are traditionally used to; in-
deed, it is quite possible that it requires a greater degree of
understanding than many developers are prepared to learn.
Whilst features such as extendable syntax (see section 7)
which are layered on top of compile-time meta-programming
may smooth off many of the usability rough edges, funda-
mentally the power that compile-time meta-programming
extends to the user comes at the cost of increased time to
learn and master.

In Converge one issue that arises is that code which continu-
ally dips in and out of the meta-programming constructs can
become rather messy and difficult to read on screen if over-
used in any one area of code. This is due in no small part
to the syntactic considerations that necessitate a move away
from the clean Python-esque syntax to something closer to
the C family of languages. It is possible that the integration
of similar features into other languages with a C-like syntax
would lead to less obvious syntactic seams.

5. IMPLICATIONS FOR OTHER LANGU-
AGES AND THEIR IMPLEMENTATIONS

I believe that Converge shows that compile-time meta-pro-
gramming facilities can be added in a seamless fashion to
a dynamically-typed OO language. It seems reasonable to
assume that this work could be equally applied to non-OO
dynamically typed languages.

In this section I first pinpoint the relatively minimal require-
ments on language design necessary to allow the safe and
practical integration of compile-time meta-programming fa-
cilities. Since the implementation of such a facility is quite
different from a normal language compiler, I then outline
the makeup of the Converge compiler to demonstrate how
an implementation of such features may look in practice.
Finally I discuss the requirements on the interface between
user code and the languages compiler.

5.1 Language design implications
Although Converge’s compile-time meta-programming facil-
ities have benefited slightly from being incorporated in the
early stages of the language design, there is surprisingly lit-
tle coupling between the base language and the compile-time
meta-programming constructs. The implications on the de-
sign of similar languages can thus be boiled down to the
following two main requirements:

1. It must be possible to determine all namespaces stat-

59

Dynamic Languages Symposium’05, San Diego, CA, USA

ically, and also to resolve variable references between
namespaces statically. This requirement is vital for
ensuring that scoping rules in the presence of compile-
time meta-programming are safe and practical (see
section 3.4). Less importantly, this requirement also
allows functions called at compile-time to be stored
in the same module as splices which call them whilst
avoiding the forward reference problem (see section
3.8).

2. Variables within namespaces other than the outermost
module namespace must be α-renameable without af-
fecting the programs semantics. This requirement is
vital to avoid the problem of variable capture.

Note that there is an important, but non-obvious, corollary
to the second point: when variables and slot names overlap
then α-renaming can not take place. In section 3.4 we saw
that, in Converge, top-level module definitions can not be
renamed because the variable names are also the slot names
of the module object. Since Converge forces all accesses of
class fields via the self variable, Converge neatly sidesteps
another potential place where this problem may arise. For-
tunately, whilst many statically typed languages allow class
fields to be treated as normal variables (i.e. making the
self. prefix optional) many dynamically typed languages
take a similar approach to Converge and should be equally
immune to this issue in that context.

Only two constructs in Converge are dedicated to compile-
time meta-programming. Practically speaking both con-
structs would need to be added to other languages:

1. A splicing mechanism. This is vital since it is the sole
user mechanism for evaluating expressions at compile-
time.

2. A quasi-quoting mechanism to build up AST’s. Al-
though such a facility is not strictly necessary, experi-
ence suggests that systems without such a facility tend
towards the unusable [37].

5.2 Compiler structure
Typical language compilers follow a predictable structure:
a parser creates a parse tree; the parse tree may be con-
verted into an AST; the parse tree or AST is used to gen-
erate target code (be that VM bytecode, machine code or
an intermediate language). Ignoring optional components
such as optimizers, one can see that normal compilers need
only two or three major components (depending on the in-
clusion or omission of an explicit AST generator). Impor-
tantly the process of compilation involves an entirely linear
data flow from one component to the next. Compile-time
meta-programming however necessitates a different compiler
structure, with five major components and a non-linear data
flow between its components. In this section I detail the
structure of the Converge compiler, which hopefully serves
as a practical example for compilers for other languages.
Whether existing language compilers can be retro-fitted to
conform to such a structure, or whether a new compiler
would need to be written can only be determined on a case-
by-case basis; however in either case this general structure
serves as an example.

Figure 1: Converge compiler states.

Figure 1 shows a (slightly non-standard) state-machine rep-
resenting the most important states of the Converge com-
piler. Large arrows indicate a transition between compiler
states; small arrows indicate a corresponding return transi-
tion from one state to another (in such cases, the compiler
transitions to a state to perform a particular action and,
when complete, returns to its previous state to carry on as
before). Each of these states also corresponds to a distinct
component within the compiler.

The stages of the Converge compiler can be described thus:

1. Parsing. The compiler parses an input file into a
parse tree. Once complete, the compiler transitions to
the next state.

2. ITree Generation. The compiler converts the parse
tree into an ITree; this stage continues until the com-
plete parse tree has been converted into an ITree. Since
ITree’s are exposed directly to the user, it is vital that
the parse tree is converted into a format that the user
can manipulate in a practical manner6.

(a) Splice mode / bytecode generation. When
it encounters a splice annotation in the parse tree,
the compiler creates a temporary ITree represent-
ing a module. It then transitions temporarily to
the bytecode generation state to compile. The
compiled temporary module is injected into the
running VM and executed; the result of the splice
is used in place of the annotation itself when cre-
ating the ITree.

(b) Quasi-quotes mode / splice mode. As the
ITree generator encounters quasi-quotes in the
parse tree, it transitions to the quasi-quote mode.
Quasi-quote mode creates an ITree respecting the
scoping rules and other features of section 3.4.

If, whilst processing a quasi-quoted expression,
a splice annotation is encountered, the compiler
enters the splice mode state. In this state, the
parse tree is converted to an ITree in a manner
mostly similar to the normal ITree Generation
state. If, whilst processing a splice annotation, a
quasi-quoted expression is encountered, the com-
piler enters the quasi-quotes mode state again.
If, whilst processing a quasi-quoted expression, a
nested quasi-quoted expression is encountered the
compiler enters a new quasi-quotes mode.

6An early, and näıve, prototype of the Converge compiler
exposed parse trees directly to the user. This quickly lead
to spaghetti code.

60

3. Bytecode generation. The complete ITree is con-
verted into bytecode and written to disk.

5.3 Compiler interface
Converge provides the CEI module which user code can use
to interact with the language compiler. Similar implementa-
tions will require a similar interface to allow two important
activities:

1. The creation of fresh variable names (see section 3.5.2).
This is vital to provide a mechanism for the user to
generate unique names which will not clash with other
names, and thus will prevent unintended variable cap-
ture. To ensure that all fresh names are unique, most
practical implementations will probably choose to in-
spect and restrict the variable names that a user can
use within ITree’s via an analogue to Converge’s name
interface; this is purely to prevent the user inadver-
tently using a name which the compiler has guaranteed
(or might in the future guarantee) to be unique.

2. The creation of arbitrary AST’s. Since it is extremely
difficult to make a quasi-quote mechanisms completely
general without making it prohibitively complex to
use, there are likely to be valid AST’s which are not
completely expressible via the quasi-quotes mechanism.
Therefore the user will require a mechanism to allow
them to create arbitrary AST fragments via a more-
or-less traditional meta-programming interface [37].

5.3.1 Abstract syntax trees
One aspect of Converge’s design that has proved to be more
important than expected, is the issue of AST design. In typ-
ical languages, the particular AST used by the compiler is
never exposed in any way to the user. Even in Converge, for
many users the particulars of the AST’s they generate via
the quasi-quotes mechanism are largely irrelevant. However
those users who find themselves needing to generate arbi-
trary AST’s via the CEI interface, and especially those (ad-
mittedly few) who perform computations based on AST’s,
find themselves disproportionately affected by decisions sur-
rounding the AST’s representation.

At the highest level, there are two main choices surrounding
AST’s. Firstly should it be represented as an homogeneous,
or heterogeneous tree? Secondly should the AST be muta-
ble or immutable? The first question is relatively easy to
answer: my experience suggests that homogeneous trees are
not a practical representation of a rich AST. Whilst parse
trees are naturally homogeneous, the conversion to an AST
leads to a more structured and detailed tree that is naturally
heterogeneous.

Let us then consider the issue of AST mutability. Initially
Converge supported mutable AST’s; whilst this feature has
proved useful from time to time, it has also proved somewhat
more dangerous than expected, in two ways. Firstly, one of-
ten naturally creates references to a given AST fragment
from more than one node. Changing a node which is refer-
enced by more than one other node can then result in unex-
pected changes, which all too frequently manifest themselves
in hard to debug ways. Secondly, it prevents ITree’s being

partially type-checked as they are being created; thus invalid
ITree’s seep through to the bytecode generator, where the
resulting error can be very difficult to relate to its origin. Fu-
ture versions of Converge will force ITree’s to be immutable,
and I would recommend other languages consider this point
carefully.

6. RELATED WORK
Perhaps surprisingly, the template system in C++ has been
found to be a fairly effective, if crude, mechanism for per-
forming compile-time meta-programming [36, 11]. Essen-
tially the template system can be seen as an ad-hoc func-
tional language which is interpreted at compile-time. How-
ever this approach is inherently limited compared to the
other approaches described in this section.

The dynamic OO language Dylan – perhaps one of the clos-
est languages in spirit to Converge – has a similar macro sys-
tem [2] to Scheme. In both languages there is a dichotomy
between macro code and normal code; this is particularly
pronounced in Dylan, where the macro language is quite
different from the main Dylan language. As explained in
the introduction, languages such as Scheme need to be able
to explicitly identify macros over normal functions. The ad-
vantage of explicitly identifying macros is that there is no
added syntax for calling a macro: macro calls look like nor-
mal function calls. Of course, this could just as easily be con-
sidered a disadvantage: a macro call is in many senses rather
different than a function call. In both schemes, macros are
evaluated by a macro expander based on patterns – nei-
ther executes arbitrary code during macro expansion. This
means that their facilities are limited in some respects – fur-
thermore, overuse of Scheme’s macros can lead to complex
and confusing ‘language towers’ [25]. Since it can execute ar-
bitrary code at compile-time Converge does not suffer from
the same macro expansion limitations, but whether moving
the syntax burden from the point of macro definition to the
call site will prevent the comprehension problems associated
with Scheme is an open question.

Whilst there are several proposals to add macros of one sort
or another to existing languages such solutions are typically
far less integrated into the language than Converge’s sys-
tems. For example Bachrach and Playford’s JSE system
[3] system requires a heavy-weight pattern-matching to be
added to Java, which adds a significant degree of complex-
ity to the base language. A much different example is Weise
and Crew’s system for C [37] which is heavy-weight due to
its lack of a quasi-quote equivalent.

Nemerle [29] is a statically typed OO language, in the Java
/ C# vein, which includes a macro system mixing elements
of Scheme and TH’s systems. Macros are not first-class cit-
izens, but AST’s are built in a manner reminiscent of TH.
The disadvantage of this approach is that calculations often
need to be arbitrarily pushed into normal functions if they
need to be performed at compile-time.

Comparisons between Converge and TH have been made
throughout this paper – I do not repeat them here. MetaML
is TH’s most obvious forebear and much of the terminol-
ogy in Converge has come from MetaML via TH. MetaML
differs from TH and Converge by being a multi-stage lan-

61

Dynamic Languages Symposium’05, San Diego, CA, USA

guage. Using its ‘run’ operator, code can be constructed
and run (via an interpreter) at run-time, whilst still ben-
efiting from MetaML’s type guarantees that all generated
programs are type-correct. The downside of MetaML is
that new definitions can not be introduced into programs.
The MacroML proposal [16] aims to provide such a facil-
ity, but in order to guarantee type-correctness forbids in-
spection of code fragments which limits the features ex-
pressivity. MetaScheme [17] is a Scheme variant which is
largely equivalent to MetaML, including possessing multi-
level typing rules for statically determining some forms of
correctness. Unlike most of the other systems in this sec-
tion, MetaScheme is largely intended for generating program
generators, and thus lacks features for practical use by pro-
grammers.

7. FUTURE WORK
Current versions of Converge sport an experimental extend-
able syntax system which allows new concrete syntaxes to
be embedded within Converge code in a manner similar to
[9]. At compile-time, user code is called to translate code in
the new syntax into raw Converge code. This has already
proved to be an immensely powerful approach, and is at
least as good a justification for the utility of compile-time
meta-programming as any other example in this paper. The
current approach has one or two minor rough edges that re-
quire work before it is suitable for widespread use, but it
has already proved sufficient to build three powerful and
sizable (collectively approximately 10,000 lines of Converge
code) model transformation system. Real-world implemen-
tations of a similar concept can be found in the Camlp4 pre-
processor [12] which allows the normal OCaml grammar to
be arbitrarily extended, and Nemerle [29]. The MetaBorg
system [7] possibly has the closest resemblance to Converge’s
system from an external point of view, although Converge
presents an homogeneous development environment to the
developer whereas MetaBorg generally works in a heteroge-
neous environment.

Converge as presented in this paper is largely intended to be
used as a two-stage meta-programming language in the TH
vein; it is however possible to use it in a multi-stage fash-
ion akin to MetaML. Making use of this facility currently
involves calls to compiler internals. It should be possible
to provide an analogue of MetaML’s ‘run’ operator for syn-
thesising and running code at run-time. Although I believe
that Converge is best suited, and most useful, as a two-stage
language, experimenting with multi-stage programming in
Converge may open up interesting new avenues of research.

8. CONCLUSIONS
In this paper I have outlined the Converge language’s com-
pile-time meta-programming features, showing how they fit
naturally into a dynamic OO programming language. Al-
though much of Converge’s compile-time meta-programming
facilities are directly inherited from TH, I demonstrated how
Converge elaborates on TH in several ways. Allowing splice
expressions to refer to definitions in the surrounding mod-
ule is an important usability gain; I then had to define
the concept of forward references, and an appropriate so-
lution to the problem they give rise to in this feature. I
showed how Converge can customise error reporting error
information, and how nested quasi-quotes, which generalize

the meta-system, allow error reporting to be customised to
a fine-grained level. I showed how Converge’s features can
be used to provide a number of desirable facilities such as
conditional compilation which are either difficult or impos-
sible to achieve with similar languages. Finally I used the
experience gained from the Converge language and imple-
mentation to suggest how compile-time meta-programming
might be added to similar languages.

An implementation of Converge, which can execute all of the
examples in this paper, is freely available under a MIT/BSD-
style licence from http://convergepl.org/.

My thanks to Kelly Androutsopoulos, and later the anony-
mous referees, for insightful comments this paper.

This research was funded by a grant from Tata Consultancy
Services.

9. REFERENCES
[1] M. Abadi and L. Cardelli. A Theory of Objects.

Springer, 1996.

[2] J. Bachrach and K. Playford. D-expressions: Lisp
power, Dylan style, 1999.
http://www.ai.mit.edu/people/jrb/Projects/dexprs.pdf

Accessed Sep 22 2004.

[3] J. Bachrach and K. Playford. The Java syntactic
extender (JSE). In Proc. OOPSLA, pages 31–42,
November 2001.

[4] J. Baker and W. C. Hsieh. Maya: multiple-dispatch
syntax extension in Java. In Proc. ACM SIGPLAN
Conference on Programming language design and
implementation, pages 270 – 281, 2002.

[5] A. Bawden. Quasiquotation in LISP. Workshop on
Partial Evaluation and Semantics-Based Program
Manipulation, January 1999.

[6] C. Brabrand and M. Schwartzbach. Growing
languages with metamorphic syntax macros. In
Workshop on Partial Evaluation and Semantics-Based
Program Manipulation, SIGPLAN. ACM, 2000.

[7] M. Bravenboer and E. Visser. Concrete syntax for
objects. Domain-specific language embedding and
assimilation without restrictions. In D. C. Schmidt,
editor, Proc. OOPSLA’04, Vancouver, Canada,
October 2004. ACM SIGPLAN.

[8] J.-P. Briot and P. Cointe. Programming with explicit
metaclasses in Smalltalk-80. In Proc. OOPSLA ’89,
October 1989.

[9] L. Cardelli, F. Matthes, and M. Abadi. Extensible
grammars for language specialization. In Proc. Fourth
International Workshop on Database Programming
Languages - Object Models and Languages, pages
11–31, August 1993.

[10] P. Cointe. Metaclasses are first class: the ObjVLisp
model. In Object Oriented Programming Systems
Languages and Applications, pages 156–162, October
1987.

62

[11] K. Czarnecki, J. O’Donnell, J. Striegnitz, and
W. Taha. DSL implementation in MetaOCaml,
Template Haskell, and C++. 3016:50–71, 2004.

[12] D. de Rauglaudre. Camlp4 - Reference Manual,
September 2003.
http://caml.inria.fr/camlp4/manual/ Accessed Sep 22
2004.

[13] F.-N. Demers and J. Malenfant. Reflection in logic,
functional and object-oriented programming: a short
comparative study. In Proc. IJCAI’95 Workshop on
Reflection and Metalevel Architectures and Their
Applications in AI, pages 29–38, August 1995.

[14] R. K. Dybvig, R. Hieb, and C. Bruggeman. Syntactic
abstraction in scheme. In Lisp and Symbolic
Computation, volume 5, pages 295–326, December
1992.

[15] M. D. Ernst, G. J. Badros, and D. Notkin. An
empirical analysis of C preprocessor use. IEEE
Transactions on Software Engineering, 2002.

[16] S. E. Ganz, A. Sabry, and W. Taha. Macros as
multi-stage computations: Type-safe, generative,
binding macros in macroml. In Proc. International
Conference on Functional Programming (ICFP),
volume 36 of SIGPLAN. ACM, September 2001.

[17] R. Glück and J. Jrgensen. Multi-level specialization.
volume 1706 of LNCS, pages 326 – 337, 1998.

[18] A. Goldberg and D. Robson. Smalltalk-80: The
Language. Addison-Wesley, January 1989.

[19] R. E. Griswold and M. T. Griswold. The Icon
Programming Language. Peer-to-Peer
Communications, third edition, 1996.

[20] R. Kelsey, W. Clinger, and J. Rees. Revised(5) report
on the algorithmic language Scheme. Higher-Order
and Symbolic Computation, 11(1):7–105, 1998.

[21] G. Kiczales, J. des Rivieres, and D. G. Bobrow. The
Art of the Metaobject Protocol. MIT Press, 1991.

[22] E. Kohlbecker, D. P. Friedman, M. Felleisen, and
B. Duba. Hygienic macro expansion. In Symposium on
Lisp and Functional Programming, pages 151–161.
ACM, 1986.

[23] J. K. Ousterhout. Scripting: Higher-level
programming for the 21st century. Computer,
31(3):23–30, 1998.

[24] L. Prechelt. An empirical comparison of seven
programming languages. Computer, 33(10):23–29,
2000.

[25] C. Queinnec. Macroexpansion reflective tower. In
Proc. Reflection’96, pages 93–104, April 1996.

[26] S. Seefried, M. M. T. Chakravarty, and G. Keller.
Optimising embedded DSLs using Template Haskell.
In Draft Proc. Implementation of Functional
Languages, 2003.

[27] T. Sheard, Z. el Abidine Benaissa, and E. Pasalic.
DSL implementation using staging and monads. In
Proc. 2nd conference on Domain Specific Languages,
volume 35 of SIGPLAN, pages 81–94. ACM, October
1999.

[28] T. Sheard and S. P. Jones. Template
meta-programming for Haskell. In Proceedings of the
Haskell workshop 2002. ACM, 2002.

[29] K. Skalski, M. Moskal, and P. Olszta.
Meta-programming in Nemerle, 2004.
http://nemerle.org/metaprogramming.pdf Accessed Oct
1 2004.

[30] G. L. Steele, Jr. Growing a language. Higher-Order
and Symbolic Computation, 12(3):221 – 236, October
1999.

[31] W. Taha. Multi-Stage Programming: Its Theory and
Applications. PhD thesis, Oregon Graduate Institute
of Science and Technology, October 1999.

[32] D. Thomas and A. Hunt. Programming Ruby: A
Pragmatic Programmer’s Guide. Addison-Wesley,
2000.

[33] L. Tratt. Converge Reference Manual, September
2004.
http://www.convergepl.org/documentation/refmanual/

Accessed Sep 23 2004.

[34] L. Tratt. Model transformations and tool integration.
Journal of Software and Systems Modelling,
4(2):112–122, May 2005.

[35] G. van Rossum. Python 2.3 reference manual, 2003.
http://www.python.org/doc/2.3/ref/ref.html Accessed
Aug 31 2005.

[36] T. Veldhuizen. Using C++ template metaprograms.
C++ Report, 7(4):36–43, May 1995.

[37] D. Weise and R. Crew. Programmable syntax macros.
In Proc. SIGPLAN, pages 156–165, 1993.

63

