
The Converge programming language
Technical report TR-05-01, Department of Computer Science, King’s College London

Laurence Tratt
laurie@tratt.net

February 26, 2005

1

Contents

1 Introduction 4

2 Converge basics 4
2.1 Syntax, scoping and modules . 5
2.2 Functions . 6
2.3 Goal-directed evaluation . 6

2.3.1 While loops . 9
2.4 Data model . 9

2.4.1 Built-in data types . 11
2.5 Comparisons and comparison overloading 11
2.6 Exceptions . 12
2.7 Meta-object protocol . 12
2.8 Differences from Python . 12
2.9 Differences from Icon . 13
2.10 Implementation . 13
2.11 Parsing . 14
2.12 Related work . 16

3 Compile-time meta-programming 16
3.1 Background . 16
3.2 A first example . 17
3.3 Splicing . 18

3.3.1 Permissible splice locations 19
3.4 The quasi-quotes mechanism . 19

3.4.1 Splicing within quasi-quotes 20
3.5 Basic scoping rules in the presence of quasi-quotes 20
3.6 The CEI interface . 22

3.6.1 ITree functions . 22
3.6.2 Names . 22

3.7 Lifting values . 23
3.8 Dynamic scoping . 24
3.9 Forward references and splicing . 24
3.10 Compile-time meta-programming in use 26

3.10.1 Conditional compilation . 26
3.11 Run-time efficiency . 28
3.12 Compile-time meta-programming costs 30
3.13 Error reporting . 30
3.14 Related work . 32

4 Implications of Converge’s compile-time meta-programming for other
languages and their implementations 33
4.1 Language design implications . 34

2

4.2 Compiler structure . 34
4.3 Compiler interface . 36

4.3.1 Abstract syntax trees . 36

5 Syntax extension for DSL’s 37
5.1 DSL implementation functions . 38
5.2 Related work . 38

6 Modelling language DSL 39
6.1 Example of use . 39
6.2 Data model . 41
6.3 Pre-parsing and grammar . 43
6.4 Traversing the parse tree . 44
6.5 Translating . 45

6.5.1 OCL expressions . 45
6.5.2 Forward references . 46
6.5.3 Model class translation . 46
6.5.4 Summary of translation . 47

6.6 Diagrammatic visualization . 47

7 Future work 48

8 Acknowledgments 49

A Converge grammar 50

B The ‘Simple UML’ modelling language translation 53

3

1 Introduction

This paper details the Converge programming language, a new dynamically typed im-
perative programming language capable of compile-time meta-programming, and with
an extendable syntax. Although Converge has been designed with the aim of imple-
menting different model transformation approaches as embedded DSL’s in mind, it is
also a General Purpose Language (GPL), albeit one with unusually powerful features.

The motivation for a new approach to implementing model transformation ap-
proaches is simple: existing languages, and their associated tool-chains, lead to long
and costly implementation cycles for model transformation approaches. The justifica-
tion for creating a new language, rather than altering an existing one, is far less obvious
— it is reasonable to suggest that, given the vast number of programming languages
already in existence, one of them should present itself as a likely candidate for modifi-
cation.

There are two reasons why a new language is necessary to meet the aims of this
paper. Firstly, in order to meet its aims, Converge contains a blend of features unique
amongst programming languages; some fundamental design choices have been neces-
sary to make these features coalesce, and imposing such choices retrospectively on an
existing language would almost certainly lead to untidy results and backwards compat-
ibility issues. Secondly, my personal experience strongly suggests that the complexity
of modern languages implementations (when such implementations are available) can
make adding new features a significant challenge. In short, I assert that it is easier in the
context of model transformations to start with a fresh canvass than to alter an existing
language.

This paper comes in three main parts. The first part documents the basics of the
Converge language itself;. The second part details Converge’s compile-time meta-
programming and syntax extension facilities, including a section detailing suggestions
for how some of Converge’s novel features could be added to similar languages. The
third part of this paper explains Converge’s syntax extension facility, and documents a
user extension which allows simple UML-esque modelling languages to be embedded
within Converge. As well as being a practical demonstration of Converge’s features,
this facility is used extensively throughout the remainder of the paper.

2 Converge basics

This section gives a brief overview of the core Converge features that are relevant to
the main subject of this paper. Since most of the basic features of Converge are similar
to other similar programming language, this section is intentionally terse. However it
should allow readers familiar with a few other programming languages the opportunity
to quickly come to grips with the most important areas of Converge, and to determine
the areas where it differs from other languages.

4

2.1 Syntax, scoping and modules

Converge’s most obvious ancestor is Python [vR03] resulting in an indentation based
syntax, a similar range and style of datatypes, and general sense of aesthetics. The most
significant difference is that Converge is a slightly more static language: all namespaces
(e.g. a modules classes and functions, and all variable references) are determined stati-
cally at compile-time whereas even modern Python allows namespaces to be altered at
run-time1. Converge’s scoping rules are also different from Python’s and many other
languages, and are intentionally very simple. Essentially Converge’s functions are syn-
onymous with both closures and blocks. Converge is lexically scoped, and there is only
one type of scope (as opposed to Python’s notion of local and global scopes). Variables
do not need to be declared before their use: assigning to a variable anywhere in a
block makes that variable local throughout the block (and accessible to inner blocks)
unless the variable is declared via the nonlocal keyword to refer to a variable in an
outer block. Variable references search in order from the innermost block outwards,
ultimately resulting in a compile-time error if a suitable reference is not found. As in
Python, fields within a class are not accessible via the default scoping mechanism: they
must be referenced via the self variable which is automatically brought into scope
in any bound function (functions declared within a class are automatically bound func-
tions). Converge’s justification for this is subtly different than Python’s, which has this
feature to aid comprehension; although this is equally true in Converge, without this
feature, namespaces would not be statically calculable since an objects slots are not
always known at compile-time.

Converge programs are split into modules, which contain a series of definitions
(imports, functions, classes and variable definitions). Unlike Python, each module is
individually compiled into a bytecode file by the Converge compiler convergec and
linked by convergel to produce a static bytecode executable which can be run by
the Converge VM. If a module is the main module of a program (i.e. passed first to
the linker), Converge calls its main function to start execution. The following module
shows a caching Fibonacci generating class, and indirectly shows Converge’s scoping
rules (the i and fib cache variables are local to the functions they are contained
within), printing 8 when run:

import Sys

class Fib_Cache:
func init():

self.cache := [0, 1]

func fib(x):
i := self.cache.len()
while i <= x:
self.cache.append(self.cache[i - 2] + self.cache[i - 1])
i += 1

return self.cache[x]

func main():
fib_cache := Fib_Cache()
Sys.println(fib_cache.fib(6))

1Prior to version 2.1, Python’s namespaces were determined almost wholly dynamically; this often lead
to subtle bugs, and hampered the utility of nested functions.

5

Compiling and running this fragment looks as follows:

$ converge convergec -o fib.cvb fib.cv
$ converge convergel -o fib fib.cvb lib/libconverge.cvl
$ converge fib
8

As in Python, Converge modules are executed from top to bottom when they are first
imported. This is because functions, classes and so on are normal objects within a Con-
verge system that need to be instantiated from the appropriate builtin classes – therefore
the order of their creation can be significant e.g. a class must be declared before its use
by a subsequent class as a superclass. Note that this only effects references made at the
modules top-level – references e.g. inside functions are not restricted thus.

2.2 Functions

Converge uses the term function both in its traditional programming sense of a stand-
alone function (or ‘procedure’), and also for functions which reside in classes (often
called methods). The reason for this is that ‘normal’ functions and ‘methods’ are not
restricted in Converge to only their traditional rôles: ‘normal’ functions can reside in
classes and ‘methods’ can reside outside of classes. When it is important to distinguish
between the two, Converge has two distinct types: unbound functions (‘normal’ func-
tions) and bound functions (‘methods’). Bound functions expect to have an implicit
first argument of the self object2; however they can not have arguments applied to it
directly. Extracting a bound function from an object creates a function binding which
wraps a bound function and a reference to the self object into an object which can then
have arguments applied to it. Function bindings can be manually created by instantiat-
ing the Func Binding class, which allows bound functions to be used with arbitrary
self objects.

In normal use, Converge automatically assumes that the keyword func introduces
an unbound function if it is used outside class, and a bound function if used inside
a class. Using the bound func or unbound func keywords overrides this be-
haviour. Functions, bound or unbound, can have zero or more parameters; prefixing
the final parameter in a function with a * denotes the ‘var args’ parameter.

An important feature of functions is their apply slot which applies a list of objects
as parameters to the function. This allows argument lists of arbitrary size to be built
and applied at run-time.

2.3 Goal-directed evaluation

An important, if less obvious, influence to Converge is Icon [GG96a]. Since Icon is
likely to be unfamiliar to be most readers, a brief overview of Icon is instructive in
understanding why it possesses an unusual, and interesting, feature set. Icon’s chief
designer was Ralph Griswold, and is a descendant of the SNOBOL series of program-
ming languages – whose design team Griswold had been a part of – and SNOBOL’s

2Note that unlike Python, Converge does not force the user to explicitly list self as a function parameter.

6

short-lived successor SL5. SNOBOL4 in particular was specifically designed for the
task of string manipulation, but an unfortunate dichotomy between pattern matching
and the rest of the language, and the more general problems encountered when trying
to use it for more general programming issues ensured that, whilst successful, it never
achieved mass acceptance; SL5 suffered from almost the opposite problem by having
an over-generalized and unwieldy procedure mechanism. See Griswold and Griswold
[GG93] for an insight into the process leading to Icon’s conception. Since programs
rarely manipulate strings in isolation, post-SL5 Griswold had as his aim to build a
language which whilst being aimed at non-numeric manipulation also was usable as a
general programming language. The eventual result was Icon [GG96a, GG96b], a lan-
guage still in use and being developed to this day. In order to fulfil the goal of practical
string manipulation, the premises on which Icon is founded are not only fundamentally
different from those normally associated with GPLs, but are also tightly coupled with
one another.

As Icon, Converge is an expression-based language, with similar notions of ex-
pression success and failure. In essence, expressions which succeed produce a value;
expressions which fail do not produce a value and percolate the failure to their outer
expression. For example the following fragment:

func main():
x := 1 < 2
y := 2 < 1
Sys.println(x)
Sys.println(y)

leads to the following output:

2
Traceback (most recent call last):

File "expr.cv", line 5, column 13, in main
Unassigned_Var_Exception: Var has not yet been assigned to.

This is because when the expression 2 < 1 is evaluated, it fails (since 2 is not less than
1); the failure percolates outwards and prevents the assignment of a value to the vari-
able y. Note that failure does not percolate outwards to arbitrary points: failure can not
cross bound expressions. A bound expression thus denotes a ‘stop point’ for backtrack-
ing. The most obvious point at which bound expressions occur is when expressions are
separated by newlines in an Converge program although bound expressions occur in
various other points. For example, each branch of an if expression is bound, which
prevents the failure of a branch causing the entire if expression to be re-evaluated.
Converge directly inherits Icon’s bound expression rules which largely preserve tradi-
tional imperative language evaluation strategies, even in the face of backtracking.

Success and failure are the building blocks for goal-directed evaluation, which is
essentially a limited form of backtracking suitable for imperative programming lan-
guages. Functions which contain the yield statement are generators and can produce
more than one return value. The yield statement is an alternative type of function
return which effectively freezes the current functions closure and stack, and returns a
value to the caller; if backtracking occurs, the function is resumed from its previous
point of execution and may return another value. Generators complete by using the

7

return statement. Since the return statement returns the null object if no ex-
pression is specified, generators typically use return fail to ensure that the com-
pletion of the generator does not cause one final loop of the caller — return’ing the
fail object causes a function to percolate failure to its caller immediately.

The most frequent use of generators is seemingly mundane, and occurs in the fol-
lowing idiom, which uses the iterate generator on a list to print each list element l
on a newline:

l := [3, 9, 27]
for x := l.iterate():

Sys.println(x)

In simple terms, the for construct evaluates its condition expression and after each
iteration of the loop backtracks in an attempt to pump the condition for more values.
This idiom therefore subsumes the clumsy encoding of iterators found in most OO
languages.

Generators can be used for much more sophisticated purposes. Consider first the
following generator which generates all Fibonacci numbers from 1 to high:

func fib(high):
a, b := [0, 1]
while b < high:

yield b
a, b := [b, a + b]

return fail

The for construct exhaustively evaluates its condition (via backtracking) until it can
produce no more values. Therefore the following fragment prints all Fibonacci values
from 1 to 100000:

for f := fib(100000):
Sys.println(f)

The conjunction operator & conjoins two or more expressions; the failure of any
part of the expression causes backtracking to occur. Backtracking resumes the most
recent generator which is still capable of producing values, only resuming older gener-
ators when more recent ones are exhausted. Thus backtracking in Converge is entirely
deterministic because the sequence in which alternatives are tried is explicitly specified
by the programmer – this makes the evaluation strategy significantly different than that
found in logic languages such as Prolog. If all expressions in a conjunction succeed,
the value of the final expression is used as the value of the conjunction. If failure oc-
curs, and there are no generators capable of producing more values to be resumed, then
the conjunction itself fails.

Combining the for construct with the & operator can lead to terse, expressive
examples such as the following which prints all Fibonacci numbers wholly divisible by
3 between 1 and 100000:

for Sys.println(f := fib(100000) & f % 3 == 0 & f)

A brief explanation of this can be instructive. Firstly f := fib(100000) pumps
the fib generator and assigns each value it returns to the variable f. Since it is con-
tained within the first expression of the & operator, when the fib generator completes,

8

its failure causes the f := ... assignment to fail, which causes the entire & operator
to fail thus causing the for construct to fail and complete. Secondly f % 3 == 0

checks whether f modulo 3 is equal to 0 or not; if it is not, failure occurs and back-
tracking occurs back to the fib generator. Since f % 3 == 0, if it succeeds, always
evaluates to 0 (== evaluates to its right hand argument on success), the final expression
of f produces the value of the variable which Sys.println then prints.

Neither Icon or Converge possess standard boolean logic since equivalent func-
tionality is available through other means. The conjunction operator acts as an ‘and’
operator. Although the disjunction operator | is generally used as ‘or’, it is in fact a
generator that successively evaluates all its expressions, producing values for those ex-
pressions which succeed. Thus in most circumstances the | operator neatly preserves
the normal expectation of ‘or’ – that it evaluates expressions in order only until it finds
one which succeeds – whilst also providing useful extra functionality.

This section has detailed the most important aspects of Converge’s Icon-esque fea-
tures, but for a more thorough treatment of these features I recommend Icon’s manual
[GG96a] — virtually all the material on goal-directed evaluation is trivially transfer-
able from Icon to Converge. Gudeman [Gud92] presents a detailed explanation of goal-
directed evaluation in general, with its main focus on Icon, and presents a denotational
semantics for Icon’s goal-directed evaluation scheme. Proebsting [Pro97] and Danvy
et al. [DGR01] both take subsets of Icon chosen for their relevance to goal-directed
evaluation, compiling the fragments into various programming languages (Danvy et.
al also specify their Icon subset with a monadic semantics); both papers provide solid
further reading on the topic.

2.3.1 While loops

Converge also contains a while construct. The difference between the for and
while constructs is initially subtle, but is ultimately more pronounced than in most
languages. In essence, each time a for loop completes, the construct backtracks to
the condition expression and pumps it for a new value. In contrast, a while construct
evaluates its expression anew after each iteration. This means that if the condition of
a while construct is a generator it can only ever generate a maximum of one value
before it is discarded. To emphasise this, the following code endlessly repeats, printing
1 on each iteration:

while f := fib(100000):
Sys.println(f)

2.4 Data model

Converge’s OO features are reminiscent of Smalltalk’s [GR89] everything-is-an-object
philosophy, but with a prototyping influence that was inspired by Abadi and Cardelli’s
theoretical work [AC96]. The internal data model is derived from ObjVLisp [Coi87].
Classes are provided as a useful, and common, convenience but are not fundamental
to the object system in the way they are to most OO languages. The system is boot-
strapped with two base classes Object and Class, with the latter being a subclass of

9

Object
slots : Dict{String : Object}

instance_of

get_slot(String) : Object

set_slot(String, Object)

conforms_to(Class)

has_slot(String)
id() : Object

to_str() : String

get_slots(String) : Dict{String : Object}

Class
name : String
fields : Dict{String : Object}

is_subclass(Class)

supers

*

init(*Object)

new(*Object) : Object

Figure 1: Core Converge data model.

the former and both being instances of Class itself: this provides a full metaclass abil-
ity whilst avoiding the class / metaclass dichotomy found in Smalltalk [BC89, DM95].
The core data model can be seen in figure 1. Note that the slots field in the Object
class is conceptual and can only be accessed via the get slot and get slots

functions.
In the Smalltalk school of OO, objects consist of a slot for each attribute in the class;

calling a method on an object looks for a suitable method in the object’s instantiating
class (and possibly its superclasses). In contrast Converge, by default, creates objects
with a slot for each field in a class, including methods. This therefore moves method
overriding in classes to object creation time, rather than the more normal invocation
time. This is possible since, as in Python, a functions name is the only factor to be
taken into account when overriding. Object creation in Converge thus has a higher
overhead than in most OO languages; this is offset by the fact that calling a function
in an object is faster (since classes and super-classes do not need to be searched). The
reason for this design decision is to ensure that all objects in a Converge system are
‘free objects’ in that they can be individually manipulated without directly affecting
other objects, a feature which can prove useful when manipulating and transforming
objects. This behaviour also mirrors the real world where, for example, changing a cars
design on paper does not change actual cars on the road; it does not however reflect
the behaviour of non-prototyping OO languages. For example, in Converge adding (or
deleting) a method in a class does not automatically affect objects which are instances
of that class, whereas in Python all of the classes instances would appear to grow (or
lose) a method. From a practical point of view it is important to note that in normal
use most users will be unaware of the difference between Converge’s object creation
scheme and its more normal counterparts. Note that this entire area of behaviour can
be overridden by using meta-classes and the meta-object protocol (section 2.7).

In similar fashion to ObjVLisp, metaclasses are otherwise normal objects which
possess a new slot. Class is the default metaclass; individual classes can instantiate

10

a different class via the metaclass keyword. Metaclasses typically subclass Class
although this is not a requirement. A simple example of a useful metaclass is the
following singleton metaclass [GHJV94] which allows classes to enforce that at most
one instance of the class can exist in the system. Noting that exbi (EXtract and BInd)
can be viewed as being broadly equivalent to other languages super keyword, the
Singleton class is defined and used as follows:

class Singleton(Class):
func new():

if not self.has_slot("instance"):
self.instance := exbi Class.new()

return self.instance

class M metaclass Singleton:
pass

Note that the new function in Class automatically calls the init function on the
newly created object, passing it all the arguments that were passed to new.

2.4.1 Built-in data types

Converge provides a similar set of built-in data types to Python: strings, integers, dic-
tionaries (key / value pairs) and sets. Dictionary keys and set elements should be
immutable (though this is not enforced, violating this expectation can lead to unpre-
dictable results), and must define == and hash functions, the latter of which should
return an integer representing the object. All built-in types are subclasses of Object,
and can be sub-classed by user classes (although the current implementation restricts
user classes to sub-classing a maximum of one built-in type).

2.5 Comparisons and comparison overloading

Converge defines a largely standard set of binary operators. The lack of standard
boolean logic in Converge means that the not operator is slightly unusual and is not
classed as a comparison operator. Rather than not taking in a boolean value and re-
turning its negated value, the not operator evaluates its expression and, if it fails, not
succeeds and produces the null object. If the expression succeeds, the value produced
is discarded and the not operator fails.

Objects can control their involvement in comparisons by defining, or overriding, the
functions which are called by the various comparison operators. Functions are passed
an object for comparison, and should fail if the comparison does not hold, or return the
object passed to them if it does. Comparison operators are essentially syntactic sugar
for calling a function of the same name in the left hand side object (e.g. the == operator
looks up the == slot in an object).

Note that although the Converge grammar (section A) bundles the is operator into
the comparison op production, it is unlike the other comparison operators in that
it tests two objects for equality of their identities, and can not be overridden by user
objects.

11

2.6 Exceptions

Converge provides exception handling that is largely similar to Python. The raise
expression raises an exception, printing a detailed stack-trace, the type of the exception
and a message from the exception object itself. All exceptions must be instances of the
Exception class in the Exceptions module. The try ... catch construct
is used to test and capture exceptions.

2.7 Meta-object protocol

Converge implements a simple but powerful Meta-Object Protocol (MOP) [KdRB91],
which allows objects to control all behaviour relating to slots. The default MOP is
contained within the Object class and comprises the get slot, get slots,
has slot and set slot functions. These can be arbitrarily overridden to control
which slots the object claims it has (or has not), and what values such slots contain.
Note that all accesses go through these functions; if they are overridden in a subclass,
the user must exercise caution to call the ‘master’ MOP functions in the Object class
to prevent infinite loops. The following example shows a MOP which returns a default
value of null for unknown slot names:

class M:
func get_slot(n):

if not self.has_slot(n):
return null

return exbi Object.get_slot(n)

2.8 Differences from Python

Converge deliberately presents a feature set which can be used in a highly similar fash-
ion to Python. Programmers used to Python can easily use Converge in a Python-esque
fashion although they will miss out on some of Converge’s more advanced features.
The chief differences from Python are that Converge is a more static language, able to
make stronger guarantees about namespaces, and that Converge is an expression based
language rather than Python’s statement based approach. Converge has a more uniform
object system, and less reliance on a battery of globally available builtin functions than
Python.

One small change from Python to Converge is a generalization of the somewhat
confusingly named finally branch which can be attached to Python’s for and
while loops. The finally branch is executed if the loop construct terminates
naturally (i.e. break is not called). Converge renames the finally branch to
exhausted and also allows a broken branch to be added which will be called if
a break is encountered. A slightly contrived example of this feature is as follows:

high := 10000
for x := fib(high):

if x % 9 == 0:
break

exhausted:
Sys.println("No Fibonacci numbers wholly divisible by 9 upto ", high)

broken:
Sys.println("Fibonacci number ", x, " wholly divisible by 9")

12

2.9 Differences from Icon

Converge’s expression system is highly similar to Icon. Provided they can adjust to
the Python-esque veneer, Icon programmers will have little difficulty exploiting Con-
verge’s expression system and implementation of goal-directed evaluation. There are
however two significant differences in Converge’s functions and generators.

Firstly, whereas Icon functions which do not have a return expression at the
end of a function have an implicit return fail added, Converge functions instead
default to return null (as do Python functions). Icon takes its approach so that
generators do not accidentally return an extra object when they should instead fail, and
Converge originally took the same approach as Icon. However in practise it is quite
common, when developing code, to write incomplete functions — often one part of
the code not initially filled in is the functions final return expression. Such func-
tions then cause seemingly bizarre errors since they do not return a value, causing
assignments in calling functions to fail and so on (indeed, this happened surprisingly
frequently in the early stages of Converge development). Since the proportion of gen-
erators to normal functions is small, it seems more sensible to optimise the safety of
normal functions at the expense of the safety of generators. As can be seen from sec-
tion 2.3, generators in Converge generally have return fail as their final action in
order to emulate Icon’s behaviour.

Secondly, Converge does not propagate generation across a return expression. In
Icon, if f is a generator then return f() turns the function containing the return
expression into a generator itself which produces all the values that f produces. Con-
verge does not emulate this behaviour, which somewhat arbitrarily turns return into
a sort of for construct in certain situations that can only be determined by knowing
whether the expression contains a generator. The same behaviour can be obtained in
Converge via the following idiom:

for yield f()
return fail

2.10 Implementation

The current Converge implementation consists of a Virtual Machine (VM) written in
C, and a compiler written in Converge itself (the current compiler was bootstrapped
several generations ago from a much simpler Python version). The VM has a simplistic
semi-conservative garbage collector which frees the user from memory management
concerns. The VM uses a continuation passing technique at the C level to make the
implementation of goal-directed evaluation reasonably simple and transparent from
the point of view of extension modules. Its instruction set is largely based on Icon’s,
although the VM implementation itself shares more in common with modern VM’s
such as Python’s.

This paper is not overly concerned with the implementation of the VM and com-
piler. Interested readers are encouraged to visit http://convergepl.org/where
the VM and compiler can be downloaded and inspected.

13

2.11 Parsing

An aspect of Converge and its implementation that is particularly important throughout
this paper is its ability to easily parse text. Converge implements a parser toolkit (the
Converge Parser Kit or CPK) which contains a parsing algorithm based on that pre-
sented by Earley [Ear70]. Earley’s parsing algorithm is interesting since it accepts and
parses any Context Free Grammar (CFG) — this means that grammars do not need to
be written in a restricted form to suit the parsing algorithm, as is the case with tradi-
tional parsing algorithms such as LALR. Practical implementations of Earley parsers
have traditionally been scarce, since the flexibility of the algorithm results in slower
parsing times than traditional parsing algorithms. The CPK utilises some (though not
all) of the additional techniques developed by Aycock and Horspool [AH02] to im-
prove its parsing time, particularly those relating to the ε production. Even though the
CPK contains an inefficient implementation of the algorithm, on a modern machine,
and even with a complex grammar, it is capable of parsing in the low hundreds of lines
per second which is sufficient for the purposes of this paper. The performance of more
sophisticated Earley parsers such as Accent [Sch] suggest that the CPK’s performance
could be raised by approximately an order of magnitude with relatively little effort.

Parsing in Converge is preceded by a tokenization (also known as lexing) phase.
The CPK provides no special support for tokenization, since the built-in regular ex-
pression library makes the creation of custom tokenizers trivial. Tokenizers are ex-
pected to return a list of objects, each of which has slots type, value, src file

and src offset. The first two slots represent the type (i.e. ID) and value (i.e.
height) of a token and must be strings; the latter two slots record both the file and
character offset within the file that a particular token originated in. The tokenizer for
Converge itself is somewhat unusual in that it needs to understand about indentation
in order that the grammar can be expressed satisfactorily. Essentially each increase
in the level of indentation results in a INDENT token being generated; each decrease
results in a DEDENT followed by a NEWLINE token. Each newline on the same level
of indentation results in a NEWLINE token.

The CPK implements an EBNF style system – essentially a BNF system with the
addition of the Kleene star. CPK production rules consist of a rule name, and one or
more alternatives. Each alternative consists of tokens, references to other rules and
groupings. Currently the only form of grouping accepted is the Kleene star. The CPK
grammar itself is as follows:

〈grammar〉 ::= 〈rule〉*

〈rule〉 ::= ‘ID’ 〈rule alternative〉*

〈rule alternative〉 ::= ‘::=’ 〈rule elem〉*
| ‘::=’ 〈rule elem〉* ‘%PRECEDENCE’ ‘INT’

〈rule elem〉 ::= 〈atom〉

| 〈grouping〉

14

〈grouping〉 ::= ‘{’ 〈atom〉 ‘}*’

〈atom〉 ::= ‘"’ ‘TOKEN’ ‘"’
| ‘ID’

Since Earley grammars can express any CFG, grammars can be ambiguous — that is,
given inputs can satisfy the grammar in more than one way. In order to disambiguate
between alternatives when building the parse tree, the CPK allows grammar rules to
have a precedence attached to them; if more than one rule has been used to parse a
given group of tokens, the rule with the highest precedence is used3.

In order to use the CPK, the user must provide it with a grammar, the name of a
start rule within the grammar, and a sequence of tokens. The result of a CPK parse
is an automatically constructed parse tree, which is represented as a nested Converge
list of the form [production name, token or list1, ..., token or

listn]. The following program fragment shows a CPK grammar for a simple calcu-
lator:

GRAMMAR := """
S ::= E
E ::= E "+" E %precedence 10

::= E "*" E %precedence 30
::= "(" E ")"
::= N "INT" %precedence 10

N ::= "-"
::=

"""

Assuming the existence of a suitable tokenize function, an example program which
uses this grammar to parse input is as follows:

import CPK.Grammar, CPK.Parser

func calc_parse(input):
grammar := Grammar.Grammar(GRAMMAR, "S")
tokens := tokenize(input)
parser := Parser.Parser(grammar)
tree := parser.parse(tokens)
Sys.println(tree)

The parse tree is printed out as:

["S", ["E", ["E", ["N"], <INT 5>], <+>, ["E", ["E", ["N"], <INT 2>],
<*>, ["E", ["N"], <INT 3>]]]]

This is somewhat easier to visualize when using the parse tree function in a
Parser instance to format the list as a tree:

S->
E ->

E ->
N ->
INT <5>

+
E ->
E ->

3Note that there is another, much rarer, type of ambiguity involving alternatives which contain different
number of tokens. These are currently always resolved in favour of the alternative containing the least
number of tokens, no matter its precedence. This generally gives the expected behaviour, but can cause
problems in some rare cases. This limitation is purely due to a naı̈ve implementation.

15

N ->
-

INT <2>

*
E ->

N ->
INT <3>

The full Converge grammar can be seen in appendix A.

2.12 Related work

This section has made several comparisons between Converge, and Icon and Python in
particular. These are not repeated in this subsection.

The Unicon project [JMPP03] is in the reasonably advanced stages of extending
Icon with object orientated features. It differs significantly from Converge in maintain-
ing virtually 100% compatibility with Icon. Unicon’s extensions to Icon, effectively
being a bolt-on to the original, mean the resulting language contains more visible seams
than does Converge. Godiva Godiva [Jef02], which aims to be a ‘very high level di-
alect of Java’ incorporating goal-directed evaluation. In reality, Godiva’s claim to be
a dialect of Java is slightly tenuous: whilst it shares some syntax, the semantics are
substantially different. Neither Unicon nor Godiva are meta-circular, and both are less
dynamic languages than Converge.

3 Compile-time meta-programming

3.1 Background

Compile-time meta-programming allows the user of a programming language a mech-
anism to interact with the compiler to allow the construction of arbitrary program frag-
ments by user code. As Steele argues, ‘a main goal in designing a language should be
to plan for growth’ [Ste99] – compile-time meta-programming is a powerful mecha-
nism for allowing a language to be grown in ways limited only by a users imagination.
Compile-time meta-programming allows users to e.g. add new features to a language
[SeABP99] or apply application specific optimizations [SCK03].

The LISP family of languages, such as Scheme [KCR98], have long had power-
ful macro facilities allowing program fragments to be built up at compile-time. Such
macro schemes suffered for many years from the problem of variable capture; fortu-
nately modern implementations of hygienic macros [DHB92] allow macros to be used
safely. LISP and Scheme programs make frequent use of macros, which are an integral
and vital feature of the language. Compile-time meta-programming is, at first glance,
just a new name for an old concept – macros. However, LISP-esque macros are but one
way of realizing compile-time meta-programming.

Brabrand and Schwartzbach differentiate between two main categories of macros
[BS00]: those which operate at the syntactic level and those which operate at the lex-
ing level. Scheme’s macro system works at the syntactic level: it operates on Abstract

16

Syntax Trees (AST’s), which structure a programs representation in a way that facili-
tates making sophisticated decisions based on a nodes context within the tree. Macro
systems operating at the lexing level are inherently less powerful, since they essentially
operate on a text string, and have little to no sense of context. Despite this, of the rela-
tively few mainstream programming languages which have macro systems, by far the
most widely used is the C preprocessor (CPP), a lexing system which is well-known
for causing bizarre programming headaches due to unexpected side effects of its use
(see e.g. [CMA93, Baw99, EBN02]).

Despite the power of syntactic macro systems, and the wide-spread usage of the
CPP, relatively few programming languages other than LISP and C explicitly incorpo-
rate such systems (of course, a lexing system such as the CPP can be used with other
text files that share the same lexing rules). One of the reasons for the lack of macro sys-
tems in programming languages is that whilst lexing systems are recognised as being
inadequate, modern languages do not share LISP’s syntactic minimalism. This creates
a significant barrier to creating a system which matches LISP’s power and seamless
integration with the host language [BP99].

Relatively recently languages such as the multi-staged MetaML [Tah99] and Tem-
plate Haskell (TH) [SJ02] have shown that statically typed functional languages can
house powerful compile-time meta-programming facilities where the run-time and compile-
time languages are one and the same. Whereas lexing macro systems typically intro-
duce an entirely new language to proceedings, and LISP macro systems need the com-
piler to recognise that macro definitions are different from normal functions, languages
such as TH move the macro burden from the point of definition to the macro call point.
In so doing, macros suddenly become as any other function within the host language,
making this form of compile-time meta-programming in some way distinct from more
traditional macro systems. Importantly these languages also provide powerful, but us-
able, ways of coping with the syntactic richness of modern languages.

Most of the languages which fall into this new category of compile-time meta-
programming languages are statically typed functional languages. In this section I
detail an extension to the core Converge language which adds compile-time meta-
programming facilities similar to TH. Since this is the first time that facilities of this
nature have been added to a dynamically-typed OO language such as Converge, section
4 details the implications of adding such a feature to similar languages.

3.2 A first example

The following program is a simple example of compile-time meta-programming, triv-
ially adopted from it’s TH cousin in [CJOT04]. expand power recursively creates
an expression that multiplies n x times; mk power takes a parameter n and creates a
function that takes a single argument x and calculates x

n; power3 is a specific power
function which calculates n

3:

func expand_power(n, x):
if n == 0:

return [| 1 |]
else:

17

return [| $<<x>> * $<<expand_power(n - 1, x)>> |]

func mk_power(n):
return [|

func (x):
return $<<expand_power(n, [| x |])>>

|]

power3 := $<<mk_power(3)>>

The user interface to compile-time meta-programming is inherited fairly directly from
TH: quasi-quote expressions [| ... |] build abstract syntax trees - ITree’s in
Converge’s terminology - that represent the program code contained within them, and
the splice annotation $<<...>> evaluates its expression at compile-time (and be-
fore VM instruction generation), replacing the splice annotation itself with the ITree
resulting from its evaluation. When the above example has been compiled into VM
instructions, power3 essentially looks as follows:

power3 := func (x):
return x * x * x * 1

By using the quasi-quotes and splicing mechanisms, we have been able to synthesise
at compile-time a function which can efficiently calculate powers without resorting
to recursion, or even iteration. Note how apart from the quasi-quotes and splicing
mechanisms no extra features have been added to the base language – unlike LISP
style languages, all parts of a Converge program are first-class elements regardless of
whether they are executed at compile-time or run-time.

This terse explanation hides much of the necessary detail which can allow readers
who are unfamiliar with similar systems to make sense of this synthesis. In the follow-
ing sections, I explore the interface to compile-time meta-programming in more detail,
building up the picture step by step.

3.3 Splicing

The key part of the ‘powers’ program is the splice annotation in the line power3 :=

$<<mk power(3)>>. The top-level splice tells the compiler to evaluate the expres-
sion between the chevrons at compile-time, and to include the result of that evaluation
in the module for ultimate bytecode generation. In order to perform this evaluation, the
compiler creates a temporary or ‘dummy’ module which contains all definitions up to,
but excluding, the definition the splice annotation is a part of; to this temporary module
a new splice function (conventionally called $$splice$$) is added which contains
a single expression return splice expr. This temporary module is compiled to
bytecode and injected into the running VM, whereupon the splice function is called.
Thus the splice function ‘sees’ all the definitions prior to it in the module, and can call
them freely – there are no other limits on the splice expression. The splice function
must return a valid ITree which the compiler uses in place of the splice annotation.

Evaluating a splice expression leads to a new ‘stage’ in the compiler being exe-
cuted. Converge’s rules about which references can cross the staging boundary are
simple: only references to top-level module definitions can be carried across the stag-
ing boundary (see section 3.5). For example the following code is invalid since the

18

variable x will only have a value at run-time, and hence is unavailable to the splice
expression which is evaluated at compile-time:

func f(x): $<<g(x)>>

Although the implementation of splicing in Converge is more flexible than in TH –
where splice expressions can only refer to definitions in imported modules – it raises a
new issue regarding forward references. This is tackled in section 3.9.

Note that splice annotations within a file are executed strictly in order from top to
bottom, and that splice annotations can not contain splice annotations.

3.3.1 Permissible splice locations

Converge is more flexible than TH in where it allows splice annotations. A representa-
tive sample of permissible locations is:

Top-level definitions. Splice annotations in place of top-level definitions must return
an ITree, or a list of ITree’s, each of which must be an assignment.

Function names. Splice annotations in place of function names must return a Name
(see section 3.6.2).

Expressions. Splice annotations as expressions can return any normal ITree. A simple
example is $<<x>> + 2. We saw another example in the ‘powers’ program
with power3 := $<<mk power(3)>>.

Within a block body. Splice annotations in block bodies (e.g. a functions body) accept
either a single ITree, or a list of ITree’s. Lists of ITree’s will be spliced in as if
they were expressions separated by newlines.

A contrived example that shows the last three of these splice locations (in order) in one
piece of code is as follows:

func $<<create_a_name()>>():
x := $<<f()>> + g()
$<<list_of_exprs()>>

At compile-time, this will result in a function named by the result of create a name

and containing 1 or more expressions, depending on the number of expressions re-
turned in the list by list of exprs.

Note that the splice expressions must return a valid ITree for the location of a
splice annotation. For example, attempting to splice in a sequence of expressions into
an expression splice such as $<<x>> + 2 results in a compile-time error.

3.4 The quasi-quotes mechanism

In the previous section we saw that splice annotations are replaced by ITree’s. In many
systems the only way to create ITree’s is to use a verbose and tedious interface of ITree
creating functions which results in a ‘style of code [which] plagues meta-programming
systems’ [WC93]. LISP’s quasi-quote mechanism allows programmers to build up

19

LISP S-expressions (which, for our purposes, are analogous to be ITree’s) by writing
normal code prepended by the backquote ‘ notation; the resulting S-expression can
be easily manipulated by a LISP program. Unfortunately LISP’s syntactic minimal-
ism is unrepresentative of modern languages, whose rich syntaxes are not as easily
represented and manipulated.

MetaML and, later TH, introduce a quasi-quotes mechanism suited to syntactically
rich languages. Converge inherits TH’s Oxford quotes notation [| ...|] notation to
represent a quasi-quoted piece of code. Essentially a quasi-quoted expression evaluates
to the ITree which represents the expression inside it. For example, whilst the raw
Converge expression 4 + 2 prints 6 when evaluated, [| 4 + 2 |] evaluates to an
ITree which prints out as 4 + 2. Thus the quasi-quote mechanism constructs an ITree
directly from the users input - the exact nature of the ITree is of immaterial to the casual
ITree user, who need not know that the resulting ITree is structured along the lines of
add(int(4), int(2)).

To match the fact that splice annotations in blocks can accept sequences of ex-
pressions to splice in, the quasi-quotes mechanism allows multiple expressions to be
expressed within it, split over newlines. The result of evaluating such an expression is,
unsurprisingly, a list of ITree’s.

Note that as in TH, Converge’s splicing and quasi-quote mechanisms cancel each
other out: $<<[| x |]>> is equivalent to x (though not necessarily vice versa).

3.4.1 Splicing within quasi-quotes

In the ‘powers’ program, we saw the splice annotation being used within quasi-quotes.
The explanation of splicing in section 3.3 would seem to suggest that the splice in-
side the quasi-quoted expression in the expand power function should lead to a
staging error since it refers to variables n and x which were defined outside of the
splice annotation. In fact, splices within quasi-quotes work rather differently to splices
outside quasi-quotes: most significantly the splice expression itself is not evaluated at
compile-time. Instead the splice expression is essentially copied as-is into the code that
the quasi-quotes transforms to. For example, the quasi-quoted expression[| $<<x>>

+ 2 |] leads to an ITree along the lines of add(x, int(2)) – the variable x in this case
would need to contain a valid ITree. As this example shows, since splice annotations
within quasi-quotes are executed at run-time they can access variables without staging
concerns.

This feature completes the cancelling out relationship between splicing and quasi-
quoting: [| $<<x>> |] is equivalent to x (though not necessarily vice versa).

3.5 Basic scoping rules in the presence of quasi-quotes

The quasi-quote mechanism can be used to surround any Converge expression to allow
the easy construction of ITree’s. Quasi-quoting an expression also has another impor-
tant feature: it fully respects lexical scoping. Take the following contrived example of
module A:

20

func x(): return 4

func y(): return [| x() * 2 |]

and module B:

import A, Sys

func x(): return 2

func main(): Sys.println($<<A.y()>>)

The quasi-quotes mechanisms ensures that since the reference to x in the quasi-quoted
expression in A.y refers lexically to A.x, that running module B prints out 8. This ex-
ample shows one of the reasons why Converge needs to be able to statically determine
namespaces: since the reference of x in A.y is lexically resolved to the function A.x,
the quasi-quotes mechanism can replace the simple reference with an original name4

that always evaluates to the slot x within the specific module A wherever it is spliced
into, even if A is not in scope (or a different A is in scope) in the splice location.

Some other aspects of scoping and quasi-quoting require a more subtle approach.
Consider the following (again contrived) example:

func f(): return [| x := 4 |]

func g():
x := 10
$<<f()>>
y := x

What might one expect the value of y in function g to be after the value of x is assigned
to it? A naı̈ve splicing of f() into g would mean that the x within [| x := 4 |]

would be captured by the x already in g – y would end with the value 4. If this was the
case, using the quasi-quote mechanism could potentially cause all sorts of unexpected
interactions and problems. This problem of variable capture is well known in the LISP
community, and hampered LISP macro implementations for many years until the con-
cept of hygienic macros was invented [KFFD86]. A new subtlety is now uncovered:
not only is Converge able to statically determine namespaces, but variable names can
be α-renamed without affecting the programs semantics. This is a significant deviation
from the Python heritage. The quasi-quotes mechanism determines all bound variables
in a quasi-quoted expression, and preemptively α-renames each bound variable to a
guaranteed unique name that the user can not specify; all references to the variable are
updated similarly. Thus the x within [| x := 4 |] will not cause variable capture
to occur, and the variable y in function g will be set to 10.

There is one potential catch: top-level definitions (all of which are assignments to
a variable, although syntactic sugar generally obscures this fact) can not be α-renamed
without affecting the programs semantics. This is because Converge’s dynamic typing
means that referencing a slot within a module can not in all cases be statically checked
at runtime. Thus renaming top-level definitions could lead to run-time ‘slot missing’
exceptions being raised. Although the current compiler does not catch this case, since

4This terminology is borrowed from TH, but with a much different implementation.

21

the user is unlikely to have cause to quasi-quote top-level definitions, barring it should
be of little practical consequence.

Whilst the above rules explain the most important of Converge’s scoping rules in
the presence of quasi-quotes, upcoming sections add extra detail to the basic scoping
rules explained in this section.

3.6 The CEI interface

At various points when compile-time meta-programming, one needs to interact with
the Converge compiler. The Converge compiler is entirely contained within a package
called Compiler which is available to every Converge program. The CEI module
within the Compiler package is the officially sanctioned interface to the Compiler,
and can be imported with import Compiler.CEI.

3.6.1 ITree functions

Although the quasi-quotes mechanism allows the easy, and safe, creation of many re-
quired ITree’s, there are certain legal ITree’s which it can not express. Most such cases
come under the heading of ‘create an arbitrary number of X’ e.g. a function with an
arbitrary number of parameters, or an if expression with an arbitrary number of elif
clauses. In such cases the CEI interface presents a more traditional meta-programming
interface to the user that allows ITree’s that are not expressible via quasi-quotes to be
built. The downside to this approach is that recourse to the manual is virtually guaran-
teed: the user needs to know the name of the ITree element(s) required (each element
has a corresponding function with a lower case name and a prepended ‘i’ in the CEI
interface e.g. ivar), what the functions requirements are etc. Fortunately this inter-
face needs to be used relatively infrequently; all uses of it are explained explicitly in
this paper.

3.6.2 Names

Section 3.3 showed that the Converge compiler sometimes uses names for variables
that the user can not specify using concrete syntax. The same technique is used by
the quasi-quote mechanism to α-rename variables to ensure that variable capture does
not occur. However one of the by-products of the arbitrary ITree creating interface
provided by the CEI interface is that the user is not constrained by Converge’s concrete
syntax; potentially they could create variable names which would clash with the ‘safe’
names used by the compiler. To ensure this does not occur, the CEI interface contains
several functions – similar to those in recent versions of TH – related to names which
the user is forced to use; these functions guarantee that there can be no inadvertent
clashes between names used by the compiler and by the user.

In order to do this, the CEI interface deals in terms of instances of the CEI.Name
class. In order to create a variable, a slot reference etc, the user must pass an instance
of this class to the relevant function in the CEI interface. New names can be created

22

by one of two functions. The name(x) function validates x, raising an exception if
it is invalid, and returning a Name otherwise. The fresh name function guarantees
to create a unique Name each time it is called (this is the interface used by the quasi-
quotes mechanism). This allows e.g. variable names to be created safely with the idiom
var := CEI.ivar(CEI.name("var name")). fresh name takes an op-
tional argument x which, if present, is incorporated into the generated name whilst
still guaranteeing the uniqueness of the resulting name; this feature aids debugging by
allowing the user to trace the origins of a fresh name. Note that the name interface
opens the door for dynamic scoping (see section 3.8).

3.7 Lifting values

When meta-programming, one often needs to take a normal Converge value (e.g. a
string) and obtain its ITree equivalent: this is known as lifting a value.

Consider a debugging function log which prints out the debug string passed to it;
this function is called at compile-time so that if the global DEBUG BUILD variable is
set to fail there is no run-time penalty for using its facility. The log function is thus
a safe means of performing what is often termed ‘conditional compilation’. Noting that
pass is the Converge no-op, a first attempt at such a function is as follows:

func log(msg):
if DEBUG_BUILD:

return [| Sys.println(msg) |]
else:

return [| pass |]

This function fails to compile: the reference to the msg variable causes the Converge
compiler to raise the errorVar ‘msg’ is not in scope when in quasi-quotes

(consider using $<<CEI.lift(msg)>>. Rewriting the offending piece of
code to the following gives the correct solution:

return [| Sys.println($<<CEI.lift(x)>>) |]

What has happened here is that the string value of x is transformed by the lift func-
tion into its abstract syntax equivalent. Constants are automatically lifted by the quasi-
quotes mechanism: the two expressions[| $<<CEI.lift("str")>> |] and [|
"str" |] are therefore equivalent.

Converge’s refusal to lift the raw reference to msg in the original definition of log
is a significant difference from TH, whose scoping rules would have caused msg to be
lifted without an explicit call to CEI.lift. To explain this difference, assume the
log function is rewritten to include the following fragment:

return [|
msg := "Debug: " + $<<CEI.lift(msg)>>
Sys.println(msg)

|]

In a sense, the quasi-quotes mechanism can be considered to introduce its own block:
the assignment to the msg variable forces it to be local to the quasi-quote block. This
needs to be the case since the alternative behaviour is nonsensical: if the assignment
referenced to the msg variable outside the quasi-quotes then what would the effect

23

of splicing in the quasi-quoted expression to a different context be? The implication
of this is that referencing a variable within quasi-quotes would have a significantly
different meaning if the variable had been assigned to within the quasi-quotes or outside
it. Whilst it is easy for the Converge compiler writer to determine that a given variable
was defined outside the quasi-quotes and should be automatically lifted in (or vice
versa), from a user perspective the behaviour can be unnecessarily confusing. In fact
Converge’s quasi-quote mechanism originally did automatically lift variable references
when possible, but this feature proved confusing in practise. To avoid this, Converge
forces variables defined outside of quasi-quotes to be explicitly lifted into it. This
also maintains a simple symmetry with Converge’s main scoping rules: assigning to a
variable in a block makes it local to that block.

3.8 Dynamic scoping

Sometimes the quasi-quote mechanisms automatic α-renaming of variables is not what
is needed. For example consider a function swap(x, y) which should swap the
values of the two variables passed as strings in its parameters. In such a case, we want
the result of the splice to capture the variables in the spliced environment. Because the
quasi-quotes mechanism only renames variables which it can determine statically at
compile time, any variables created via the idiom CEI.ivar(CEI.name(x)) and
spliced into the quasi-quotes will not be renamed. The following succinct definition of
swap takes advantage of this fact:

func swap(x, y):
x_var := CEI.ivar(CEI.name(x))
y_var := CEI.ivar(CEI.name(y))
return [|

temp := $<<x_var>>
$<<x_var>> := $<<y_var>>
$<<y_var>> := temp

|]

Note that the variable tempwithin the quasi-quotes will be α-renamed and thus will be
effectively invisible to the code that it is spliced into, but that the two variables referred
to by x and y will be scoped by their splice location. This function can be used thus:

a := 10
b := 20
$<<swap("a", "b")>>

Dynamic scoping also tends to be useful when a quasi-quoted function is created piece-
meal with many separate quasi-quote expressions. In such a case, variable references
can only be resolved successfully when all the resulting ITree’s are spliced together
since references to the functions parameters and so on will not be determined until that
point. Since it is highly tedious to continually write CEI.ivar(CEI.name("foo")),
Converge provides the special syntax &foo which is equivalent.

3.9 Forward references and splicing

In section 3.3 we saw that when a splice annotation outside quasi-quotes is encoun-
tered, a temporary module is created which contains all the definitions up to, but ex-

24

cluding, the definition holding the splice annotation. This is a very useful feature since
compile-time functions used only in one module can be kept in that module. However
this introduces a real problem involving forward references. A forward reference is de-
fined to be a reference to a definition within a module, where the reference occurs at an
earlier point in the source file than the definition. If a splice annotation is encountered
and compiles a subset of the module, then some definitions involved in forward refer-
ences may not be included: thus the temporary module will fail to compile, leading to
the entire module not compiling. Worse still, the user is likely to be presented with a
highly confusing error telling them that a particular reference is undefined when, as far
as they are concerned, the definition is staring at them within their text editor!

Consider the following contrived example:

func f1(): return [| 7 |]

func f2(): x := f4()

func f3(): return $<<f1()>>

func f4(): pass

If f2 is included in the temporary module created when evaluating the splice annota-
tion in f3, then the forward reference to f4 will be unresolvable.

The solution taken by Converge ensures that, by including only a minimal subset of
definitions in the temporary module, most forward references do not raise a compile-
time error. We saw in section 3.5 that the quasi-quotes mechanism uses Converge’s
statically determined namespaces to calculate bound variables. That same property is
now used to determine an expressions free variables.

When a splice annotation is encountered, the Converge compiler does not immedi-
ately create a temporary module. First it calculates the splice expressions free variables;
any previously encountered definition which has a name in the set of free variables is
added to a set of definitions to include. These definitions themselves then have their
free variables calculated, and again any previously encountered definition which has
a name in the set of free variables is added to the set of definitions to include. This
last step is repeated until an iteration adds no new definitions to the set. At this point,
Converge then goes back in order over all previously encountered definitions, and if
the definition is in the list of definitions to include, it is added to the temporary module.
Recall that the order of definitions in a Converge file can be significant (see section
2.4): this last stage ensures that definitions are not reordered in the temporary module.
Note also that free variables which genuinely do not refer to any definitions (i.e. a
mistake on the part of the programmer) will pass through this scheme unmolested and
will raise an appropriate error when the temporary module is compiled.

Using this method, the temporary module that is created and evaluated for the ex-
ample looks as follows:

func f1(): return [| 7 |]

func $$splice$$(): return f1()

There are thus no unresolvable forward references in this example.

25

There is a secondary, but significant, advantage to this method: since it reduces
the number of definitions in temporary modules it can lead to an appreciable saving in
compile time, especially in files containing multiple splice annotations.

3.10 Compile-time meta-programming in use

In this paper thus far we have seen several uses of compile-time meta-programming.
There are many potential uses for this feature, many of which are too involved to detail
in the available space. For example, one of the most exciting uses of the feature has
been in conjunction with Converge’s extendable syntax feature (see section 5), allowing
powerful DSL’s to be expressed in an arbitrary concrete syntax. One can see similar
work involving DSL’s in e.g. [SCK03, CJOT04].

In this section I show two seemingly mundane uses of compile-time meta-programming:
conditional compilation and compile-time optimization. Although mundane in some
senses, both examples open up potential avenues not currently available to other dy-
namically typed OO languages.

3.10.1 Conditional compilation

Whereas languages such as Java attempt to insulate their users from the underlying
platform an application is running on, languages such as Python and Ruby allow the
user access to many of the lower-level features the platform provides. Many appli-
cations rely on such low-level features being available in some fashion. However for
the developer who has to provide access to such features a significant problem arises:
how does one sensibly provide access to such features when they are available, and to
remove that access when they are unavailable?

The log function on page 23 was a small example of conditional compilation.
Let us consider a simple but realistic example that is more interesting from an OO
perspective. The POSIX fcntl (File CoNTrol) feature provides low-level control of
file descriptors, for example allowing file reads and writes to be set to be non-blocking;
it is generally only available on UNIX-like platforms. Assume that we wish to provide
some access to the fcntl feature via a method within file objects; this method will
need to call the raw function within the provided fcntl module iff that module is
available on the current platform.

In Python for example, there are two chief ways of doing this. The first mechanism
is for a File class to defer checking for the existence of the fcntl module until
the fcntl method is called, raising an exception if the feature is not detected in the
underlying platform. Callers who wish to avoid use of the fcntlmethod on platforms
lacking this feature must use catch the appropriate exception. This rather heavy handed
solution goes against the spirit of duck typing [TH00], a practise prevalent in languages
such as Ruby and Python. In duck typing, one essentially checks for the presence of
a method(s) which appear to satisfy a particular API without worrying about the type
of the object in question. Whilst this is perhaps unappealing from a theoretical point
of view, this approach is common in practise due to the low-cost flexibility it leads to.

26

To ensure that duck typing is possible in our fcntl example, we are forced to use
exception handling and the dynamic selection of an appropriate sub-class:

try:
import fcntl
_HAVE_FCNTL = True

except exceptions.ImportError:
_HAVE_FCNTL = False

class Core_File:
...

if _HAVE_FCNTL:
class File(Core_File):

def fcntl(op, arg):
return fcntl.fcntl(self.fileno(), op, arg)

else:
class File(Core_File):

pass

Whilst this allows for duck typing, this idiom is far from elegant. The splitting of the
File class into a core component and sub-classes to cope with the presence of the
fcntl functionality is somewhat distasteful. This example is also far from scalable:
if one wishes to use the same approach for more features in the same class then the
resultant code is likely to be highly fragile and complex.

Although it appears that the above idiom can be encoded largely ‘as is’ in Con-
verge, we immediately hit a problem due to the fact that module imports are statically
determined. Thus a direct Converge analogue would compile correctly only on plat-
forms with a fcntl module. However by using compile-time meta-programming one
can create an equivalent which functions correctly on all platforms and which cuts out
the ugly dynamic sub-class selection.

The core feature here is that class fields are permissible splice locations (see sec-
tion 3.3.1). A splice which returns an ITree that is a function will have that function
incorporated into the class; if the splice returns pass as an ITree then the class is
unaffected. So at compile-time we first detect for the presence of a fcntl module
(the VM.loaded module names function returns a list containing the names of
all loaded modules); if it is detected, we splice in an appropriate fcntl method oth-
erwise we splice in the no-op. This example make use of two hitherto unencountered
features. Firstly, using an if construct as an expression requires a different syntax
(to work around parsing limitations associated with indentation based grammars); the
construct evaluates to the value of the final expression in whichever branch is taken,
failing if no branch is taken. Secondly the modified Oxford quotes [d| ...|] –
declaration quasi-quotes – act like normal quasi-quotes except they do not α-rename
variables; declaration quotes are typically most useful at the top-level of a module. The
Converge example is as follows:

$<<if VM.loaded_module_names().contains("FCntl") {
[d|

import FCntl
_HAVE_FCNTL := 1

|]
}
else {

[d| _HAVE_FCNTL := 0 |]
}>>

27

class File:
$<<if _HAVE_FCNTL {

[|
func fcntl(op, arg):

return FCntl.fcntl(self.fileno(), op, arg)
|]

}
else {

[| pass |]
}>>

Although this example is simplistic in many ways, it shows that compile-time meta-
programming can provide a conceptually neater solution than any purely run-time al-
ternative since it allows related code fragments to be kept together. It also provides
a potential solution to related problems. For example portability related code in dy-
namically typed OO languages often consists of many if statements which perform
different actions depending on a condition which relates to querying the platform in
use. Such code can become a performance bottleneck if called frequently within a
program. The use of compile-time meta-programming can lead to a zero-cost run-time
overhead. Perhaps significantly, the ability to tune a program at compile-time for porta-
bility purposes is the largest single use of the C preprocessor [EBN02] – compile-time
meta-programming of the sort found in Converge not only opens similar doors for dy-
namically typed OO languages, but allows the process to occur in a far safer, more
consistent and more powerful environment than the C preprocessor.

3.11 Run-time efficiency

In this section I present the Converge equivalent of the TH compile-time printf
function given in [SJ02]. Such a function takes a format string such as "%s has %d

%s" and returns a quasi-quoted function which takes an argument per ‘%’ specifier and
intermingles that argument with the main text string. For our purposes, we deal with
decimal numbers %d and strings %s.

The motivation for a TH printf is that such a function is not expressible in base
Haskell. Although Converge functions can take a variable number of arguments (as
Python, but unlike Haskell), having a compile-time version still has two benefits over
its run-time version: any errors in the format string are caught at compile-time; an
efficiency boost.

This example assumes the existence of a function split format which given a
string such as "%s has %d %s" returns a list of the form [PRINTF STRING, "

has ", PRINTF INT, " ", PRINTF STRING]wherePRINTF STRING and
PRINTF INT are constants.

First we define the main printf function which creates the appropriate number of
parameters for the format string (of the form p0, p1 etc.). Parameters must be created
by the CEI interface. An iparam has two components: a variable, and a default value
(the latter can be set to null to signify the parameter is mandatory and has no default
value). printf then returns an anonymous quasi-quoted function which contains the
parameters, and a spliced-in expression returned by printf expr:

28

func printf(format):
split := split_format(format)
params := []
i := 0
for part := split.iterate():

if part == PRINTF_INT | part == PRINTF_STRING:
params.append(CEI.iparam(CEI.ivar(CEI.name("p" + i.to_str())), null))
i += 1

return [|
func ($<<params>>):
Sys.println($<<printf_expr(split, 0)>>)

|]

printf expr is a recursive function which takes two parameters: a list representing
the parts of the format string yet to be processed; an integer which signifies which
parameter of the quasi-quoted function has been reached.

func printf_expr(split, param_i):
if split.len() == 0:

return [| "" |]
param := CEI.ivar(CEI.name("p" + param_i.to_str()))
if split[0].conforms_to(String):

return [| $<<CEI.lift(split[0])>> + $<<printf_expr(split[1 :], param_i)>> |]
elif split[0] == PRINTF_INT:

return [| $<<param>>.to_str() + $<<printf_expr(split[1 :], param_i + 1)>> |]
elif split[0] == PRINTF_STRING:

return [| $<<param>> + $<<printf_expr(split[1 :], param_i + 1)>> |]

Essentially, printf expr recursively calls itself, each time removing the first el-
ement from the format string list, and incrementing the param i variable iff a pa-
rameter has been processed. This latter condition is invoked when a string or integer
‘%’ specifier is encountered; raw text in the input is included as is, and as it does not
involve any of the functions parameters, does not increment param i. When the
format string list is empty, the recursion starts to unwind.

When the result of printf expr is spliced into the quasi-quoted function, the
dynamically scoped references to parameter names in printf expr become bound
to the quasi-quoted functions’ parameters. As an example of calling this function,
$<<printf("%s has %d %s")>> generates the following function:

func (p0, p1, p2):
Sys.println(p0 + " has " + p1.to_str() + " " + p2 + "")

so that evaluating the following:

$<<printf("%s has %d %s")>>("England", 39, "traditional counties")

results in England has 39 traditional counties being printed to screen.
This definition of printf is simplistic and lacks error reporting, partly because it

is intended to be written in a similar spirit to its TH equivalent. Converge comes with a
more complete compile-time printf function as an example, which uses an iterative
solution with more compile-time and run-time error-checking. Simple benchmarking
of the latter function reveals that it runs nearly an order of magnitude faster than its
run-time equivalent5 – a potentially significant gain when a tight loop repeatedly calls
printf.

5This large differential is in part due to the fact that the current Converge VM imposes a relatively high
overhead on function application.

29

3.12 Compile-time meta-programming costs

Although compile-time meta-programming has a number of benefits, it would be naı̈ve
to assume that it has no costs associated with it. However although Converge’s features
have been used to build several small programs, and two systems of several thousand
lines of code each, it will require a wider range of experience from multiple people
working in different domains to make truly informed comments in this area.

One thing is clear from experience with LISP: compile-time meta-programming in
its rawest form is not likely to be grasped by every potential developer [Que96]. To use
it to its fullest potential requires a deeper understanding of the host language than many
developers are traditionally used to; indeed, it is quite possible that it requires a greater
degree of understanding than many developers are prepared to learn. Whilst features
such as extendable syntax (see section 5) which are layered on top of compile-time
meta-programming may smooth off many of the usability rough edges, fundamentally
the power that compile-time meta-programming extends to the user comes at the cost
of increased time to learn and master.

In Converge one issue that arises is that code which continually dips in and out
of the meta-programming constructs can become rather messy and difficult to read on
screen if over-used in any one area of code. This is due in no small part to the syntactic
considerations that necessitate a move away from the clean Python-esque syntax to
something closer to the C family of languages. It is possible that the integration of
similar features into other languages with a C-like syntax would lead to less obvious
syntactic seams.

3.13 Error reporting

Perhaps the most significant unresolved issue in compile-time meta-programming sys-
tems relates to error reporting [CJOT04]. Although Converge does not have complete
solutions to all issues surrounding error reporting, it does contain some rudimentary
features which may give insight into the form of more powerful error reporting fea-
tures both in Converge and other compile-time meta-programming systems.

The first aspect of Converge’s error reporting facilities relates to exceptions. When
an exception is raised, detailed stack traces are printed out allowing the user to inspect
the sequence of calls that led to the exception being raised. These stack traces dif-
fer from those found in e.g. Python in that each level in the stack trace displays the
file name, line number and column number that led to the error. Displaying the col-
umn number allows users to make use of the fine-grained information to more quickly
narrow down the precise source of an exception. Converge is able to display such de-
tailed information because when it parses text, it stores the file name, line number and
column number of each token. Tokens are ordered into parse trees; parse trees are con-
verted into ASTs; ASTs are eventually converted into VM instructions. At each point
in this conversion, information about the source code elements is retained. Thus every
VM instruction in a binary Converge program has a corresponding debugging entry
which records which file, line number and column number the VM instruction relates

30

to. Whilst this does require more storage space than simpler forms of error informa-
tion, the amount of space required is insignificant when the vast storage resources of
modern hardware are considered.

Whilst the base language needs to record the related source offset of each VM
instruction, the source file a VM instruction relates to is required only due to compile-
time meta-programming. Consider a file A.cv:

func f():
return [| 2 + "3" |]

and a file B.cv:

import A

func main():
$<<A.f()>>

When the quasi-quoted code in A.f is spliced in, and then executed an exception will
be raised about the attempted addition of an integer and a string. The exception that
results from running B is as follows:

Traceback (most recent call last):
File "A.cv", line 2, column 13, in main

Type_Exception: Expected instance of Int, but got instance of String.

The fact that the A module is pinpointed as the source of the exception may initially
seem surprising, since the code raising the exception will have been spliced into the
B module. This is however a deliberate design choice in Converge. Although the
code from A.f has been spliced into B.main, when B is run the quasi-quoted code
retains the information about its original source file, and not its splice location. To
the best of my knowledge, this approach to error reporting in the face of compile-time
meta-programming is unique. As points of comparison, TH is not able to produce
any detailed information during a stack-trace and SCM Scheme [Jaf03] pinpoints the
source file and line number of run-time errors as that of the macro call site. In SCM
Scheme if the code that a macro produces contains an error, all the user can work out is
which macro would have led to the problem — the user has no way of knowing which
part of the macro may be at fault.

Converge allows customization of the error-reporting information stored about a
given ITree. Firstly Converge adds a feature not present in TH: nested quasi-quotes.
Essentially an outer quasi-quote returns the ITree of the code which would create the
ITree of the nested quasi-quote. For example the following nested code:

Sys.println([| [| 2 + "3" |] |].pp())

results in the following output:

CEI.ibinary_add(CEI.iint(2, "ct.cv", 484), CEI.istring("3", "ct.cv",
488), "ct.cv", 486)

Nested quasi-quotes provide a facility which allows users to analyse the ITrees that
plain quasi-quotes generate: one can see in the above that each ITree element contains a
reference to the file it was contained within (ct.cv in this case) and to the offset within
the file (484 and so on). The CEI module provides a function src info to var

31

which given an ITree representing quasi-quoted code essentially copies the ITree6 re-
placing the source code file and offsets with variables src file and src offset.
This new ITree is then embedded in a quasi-quoted function which takes two arguments
src file and src offset. When the user splices in, and then calls, this function
they update the ITree’s relation to source code files and offsets. Using this function in
the following fashion:

Sys.println(CEI.src_info_to_var([| [| 2 + "3" |] |]).pp())

results in the following output:

unbound_func (src_file, src_offset){
return CEI.ibinary_add(CEI.iint(2, src_file, src_offset),
CEI.istring("3", src_file, src_offset), src_file, src_offset)

}

In practice when one wishes to customise the claimed location of quasi-quoted code,
the nested quasi-quotes need to be cancelled out by a splice. For example, to change
source information to be offset 77 in the file nt.cv we would use the following code:

return $<<CEI.src_info_to_var([| [| 2 + "3" |] |], "nt.cv", 77>>

Whilst this appears somewhat clumsy, it is worth noting that by adding only the simple
concept of nested quasi-quotes, complex manipulation of the meta-system is possible.

Converge’s current approach is not without its limitations. Its chief problem is that
it can only relate one source code location to any given VM instruction. There is thus
an ‘either / or’ situation in that the user can choose to record either the definition point
of the quasi-quoted code, or change it to elsewhere (e.g. to record the splice point). It
would be of considerable benefit to the user if it is possible to record all locations which
a given VM instruction relates to. Assuming the appropriate changes to the compiler
and VM, then the only user-visible change would be that src info to varwould
append src file and src offset information within a given ITree, rather than
overwriting the information it already possessed.

3.14 Related work

Perhaps surprisingly, the template system in C++ has been found to be a fairly ef-
fective, if crude, mechanism for performing compile-time meta-programming [Vel95,
CJOT04]. Essentially the template system can be seen as an ad-hoc functional language
which is interpreted at compile-time. However this approach is inherently limited com-
pared to the other approaches described in this section.

The dynamic OO language Dylan – perhaps one of the closest languages in spirit
to Converge – has a similar macro system [BP99] to Scheme. In both languages there
is a dichotomy between macro code and normal code; this is particularly pronounced
in Dylan, where the macro language is quite different from the main Dylan language.
As explained in the introduction, languages such as Scheme need to be able to iden-
tify macros as distinct from normal functions (although Bawden has suggested a way

6In the current implementation, the src info to var actually mutates ITrees, but for reasons ex-
plained in section 4.3.1 this will not be possible in the future.

32

to make macros first-class citizens [Baw00]). The advantage of explicitly identifying
macros is that there is no added syntax for calling a macro: macro calls look like nor-
mal function calls. Of course, this could just as easily be considered a disadvantage:
a macro call is in many senses rather different than a function call. In both schemes,
macros are evaluated by a macro expander based on patterns – neither executes ar-
bitrary code during macro expansion. This means that their facilities are limited in
some respects – furthermore, overuse of Scheme’s macros can lead to complex and
confusing ‘language towers’ [Que96]. Since it can execute arbitrary code at compile-
time Converge does not suffer from the same macro expansion limitations, but whether
moving the syntax burden from the point of macro definition to call site will prevent
the comprehension problems associated with Scheme is an open question.

Whilst there are several proposals to add macros of one sort or another to exist-
ing languages (e.g. Bachrach and Playford’s Java macro system [BP01]), the lack of
integration with their target language thwarts practical take-up.

Nemerle [SMO04] is a statically typed OO language, in the Java / C# vein, which
includes a macro system mixing elements of Scheme and TH’s systems. Macros are
not first-class citizens, but AST’s are built in a manner reminiscent of TH. The disad-
vantage of this approach is that calculations often need to be arbitrarily pushed into
normal functions if they need to be performed at compile-time.

Comparisons between Converge and TH have been made throughout this section –
I do not repeat them here. MetaML is TH’s most obvious forebear and much of the ter-
minology in Converge has come from MetaML via TH. MetaML differs from TH and
Converge by being a multi-stage language. Using its ‘run’ operator, code can be con-
structed and run (via an interpreter) at run-time, whilst still benefiting from MetaML’s
type guarantees that all generated programs are type-correct. The downside of MetaML
is that new definitions can not be introduced into programs. The MacroML proposal
[GST01] aims to provide such a facility but – in order to guarantee type-correctness –
forbids inspection of code fragments which limits the features expressivity.

Significantly, with the exception of Dylan, I know of no other dynamically typed
OO language in the vein of Converge which supports any form of compile-time meta-
programming natively.

4 Implications of Converge’s compile-time meta-programming
for other languages and their implementations

I believe that Converge shows that compile-time meta-programming facilities can be
added in a seamless fashion to a dynamically-typed OO language and that such facil-
ities provide useful functionality not available previously in such languages. In this
section I first pinpoint the relatively minimal requirements on language design nec-
essary to allow the safe and practical integration of compile-time meta-programming
facilities. Since the implementation of such a facility is quite different from a normal
language compiler, I then outline the makeup of the Converge compiler to demonstrate

33

how an implementation of such features may look in practice. Finally I discuss the
requirements on the interface between user code and the languages compiler.

4.1 Language design implications

Although Converge’s compile-time meta-programming facilities have benefited slightly
from being incorporated in the early stages of the language design, there is surprisingly
little coupling between the base language and the compile-time meta-programming
constructs. The implications on the design of similar languages can thus be boiled
down to the following two main requirements:

1. It must be possible to determine all namespaces statically, and also to resolve
variable references between namespaces statically. This requirement is vital for
ensuring that scoping rules in the presence of compile-time meta-programming
are safe and practical (see section 3.5). Slightly less importantly, this requirement
also allows functions called at compile-time to be stored in the same module
as splices which call them whilst avoiding the forward reference problem (see
section 3.9).

2. Variables within namespaces other than the outermost module namespace must
be α-renameable without affecting the programs semantics. This requirement is
vital to avoid the problem of variable capture.

Note that there is an important, but non-obvious, corollary to the second point: when
variables and slot names overlap then α-renaming can not take place. In section 3.5
we saw that, in Converge, top-level module definitions can not be renamed because the
variable names are also the slot names of the module object. Since Converge forces
all accesses of class fields via the self variable, Converge neatly sidesteps another
potential place where this problem may arise. Fortunately, whilst many statically typed
languages allow class fields to be treated as normal variables (i.e. making the self.
prefix optional) most dynamically typed languages take a similar approach to Converge
and should be equally immune to this issue in that context.

Only two constructs in Converge are dedicated to compile-time meta-programming.
Practically speaking both constructs would need to be added to other languages:

1. A splicing mechanism. This is vital since it is the sole user mechanism for eval-
uating expressions at compile-time.

2. A quasi-quoting mechanism to build up AST’s. Although such a facility is not
strictly necessary, experience suggests that systems without such a facility tend
towards the unusable [WC93].

4.2 Compiler structure

Typical language compilers follow a predictable structure: a parser creates a parse
tree; the parse tree may be converted into an AST; the parse tree or AST is used to

34

Quasi-
quotes Mode

ITree
Generation

$

[| |]

Splice
Mode

Bytecode
Generation

[| |]

$

Parsing

[| |]

Figure 2: Converge compiler states.

generate target code (be that VM bytecode, machine code or an intermediate language).
Ignoring optional components such as optimizers, one can see that normal compilers
need only two or three major components (depending on the inclusion or omission of an
explicit AST generator). Importantly the process of compilation involves an entirely
linear data flow from one component to the next. Compile-time meta-programming
however necessitates a different compiler structure, with five major components and a
non-linear data flow between its components. In this section I detail the structure of
the Converge compiler, which hopefully serves as a practical example for compilers for
other languages. Whether existing language compilers can be retro-fitted to conform
to such a structure, or whether a new compiler would need to be written can only be
determined on a case-by-case basis; however in either case this general structure serves
as an example.

Figure 2 shows a (slightly non-standard) state-machine representing the most im-
portant states of the Converge compiler. Large arrows indicate a transition between
compiler states; small arrows indicate a corresponding return transition from one state
to another (in such cases, the compiler transitions to a state to perform a particular ac-
tion and, when complete, returns to its previous state to carry on as before). Each of
these states also corresponds to a distinct component within the compiler.

The stages of the Converge compiler can be described thus:

1. Parsing. The compiler parses an input file into a parse tree. Once complete, the
compiler transitions to the next state.

2. ITree Generation. The compiler converts the parse tree into an ITree; this stage
continues until the complete parse tree has been converted into an ITree. Since
ITree’s are exposed directly to the user, it is vital that the parse tree is converted
into a format that the user can manipulate in a practical manner7.

(a) Splice mode / bytecode generation. When it encounters a splice annota-
tion in the parse tree, the compiler creates a temporary ITree representing
a module. It then transitions temporarily to the bytecode generation state
to compile. The compiled temporary module is injected into the running

7An early, and naı̈ve, prototype of the Converge compiler exposed parse trees directly to the user. This
quickly lead to spaghetti code.

35

VM and executed; the result of the splice is used in place of the annotation
itself when creating the ITree.

(b) Quasi-quotes mode / splice mode. As the ITree generator encounters
quasi-quotes in the parse tree, it transitions to the quasi-quote mode. Quasi-
quote mode creates an ITree respecting the scoping rules and other features
of section 3.5.

If, whilst processing a quasi-quoted expression, a splice annotation is en-
countered, the compiler enters the splice mode state. In this state, the parse
tree is converted to an ITree in a manner mostly similar to the normal ITree
Generation state. If, whilst processing a splice annotation, a quasi-quoted
expression is encountered, the compiler enters the quasi-quotes mode state
again. If, whilst processing a quasi-quoted expression, a nested quasi-
quoted expression is encountered the compiler enters a new quasi-quotes
mode.

3. Bytecode generation. The complete ITree is converted into bytecode and writ-
ten to disk.

4.3 Compiler interface

Converge provides the CEI module which user code can use to interact with the lan-
guage compiler. Similar implementations will require a similar interface to allow two
important activities:

1. The creation of fresh variable names (see section 3.6.2). This is vital to provide
a mechanism for the user to generate unique names which will not clash with
other names, and thus will prevent unintended variable capture. To ensure that
all fresh names are unique, most practical implementations will probably choose
to inspect and restrict the variable names that a user can use within ITree’s via
an analogue to Converge’s name interface; this is purely to prevent the user
inadvertently using a name which the compiler has guaranteed (or might in the
future guarantee) to be unique.

2. The creation of arbitrary AST’s. Since it is extremely difficult to make a quasi-
quote mechanisms completely general without making it prohibitively complex
to use, there are likely to be valid AST’s which are not completely expressible
via the quasi-quotes mechanism. Therefore the user will require a mechanism
to allow them to create arbitrary AST fragments via a more-or-less traditional
meta-programming interface [WC93].

4.3.1 Abstract syntax trees

One aspect of Converge’s design that has proved to be more important than expected, is
the issue of AST design. In typical languages, the particular AST used by the compiler

36

is never exposed in any way to the user. Even in Converge, for many users the particu-
lars of the ITree’s they generate via the quasi-quotes mechanism are largely irrelevant.
However those users who find themselves needing to generate arbitrary ITree’s via the
CEI interface, and especially those (admittedly few) who perform computations based
on ITree’s, find themselves disproportionately affected by decisions surrounding the
ITree’s representation.

At the highest level, there are two main choices surrounding AST’s. Firstly should
it be represented as an homogeneous, or heterogeneous tree? Secondly should the
AST be mutable or immutable? The first question is relatively easy to answer: ex-
perience suggests that homogeneous trees are not a practical representation of a rich
AST. Whilst parse trees are naturally homogeneous, the conversion to an AST leads to
a more structured and detailed tree that is naturally heterogeneous.

Let us then consider the issue of AST mutability. Initially Converge supported
mutable AST’s; whilst this feature has proved useful from time to time, it has also
proved somewhat more dangerous than expected. This is because one often naturally
creates references to a given AST fragment from more than one node. Changing a
node which is referenced by more than one other node can then result in unexpected
changes, which all too frequently manifest themselves in hard to debug ways. Since
it is not possible to check for this problem in the general case, the user is ultimately
responsible for ensuring it does not occur; in practise this has proved to be unrealistic,
and gradually all ITree-mutating code has been banished from Converge code. Future
versions of Converge will force ITree’s to be immutable, and I would recommend other
languages consider this point carefully.

5 Syntax extension for DSL’s

Converge has a simple but powerful facility allowing users to embed arbitrary se-
quences of tokens within Converge source files. At compile-time these tokens are
passed to a designated user function, which is expected to return an AST. This allows
the user to extend the languages syntax in an arbitrary fashion, meaning that DSLs can
be embedded within normal Converge code. Although this feature is somewhat less
developed than the other aspects of Converge, it is useful even its current state.

Essentially a DSL fragment is an indented block containing an arbitrary sequence
of tokens. The DSL block is introduced by a variant on the splice syntax $< expr

> where expr should evaluate to a function (the DSL implementation function). The
DSL function will be called at compile-time with a list of tokens, and is expected to
return an AST which will replace the DSL block in the same way as a normal splice.
Compile-time meta-programming is thus the mechanism which facilitates embedding
DSLs.

An example DSL fragment is as follows. Colloquially this block is referred to as ‘a
TM.model class’:

import TM.TM

$<TM.model_class>:

37

abstract class ML1_Element {
name : String;

inv nonempty_name:
name != null and name.len() > 0

}

Note that the DSL fragment is written in an entirely different syntax than Converge
itself.

Currently DSL blocks are automatically tokenized by the Converge compiler using
its default tokenization rules — this is not a fundamental requirement of the technique,
but a peculiarity of the current implementation. More sophisticated implementations
might choose to defer tokenization to the DSL implementation function. However
using the Converge tokenizer has the advantage that normal Converge code can be
embedded inside the DSL itself assuming an appropriate link from the DSL’s grammar
to the Converge grammar.

5.1 DSL implementation functions

DSL implementation functions follow a largely similar sequence of steps in order to
translate the input tokens into an ITree:

1. Alter the input tokens as necessary. Since DSL’s often use keywords that are
not part of the main Converge grammar, such alterations mostly take the form of
replacing ID tokens with specific keyword tokens.

2. Parse the input tokens according to the DSL’s grammar.

3. Traverse the parse tree, translating it into an ITree.

Section 6 explores these steps in greater detail via a concrete example.

5.2 Related work

Real-world implementations of a similar concept are surprisingly rare. The Camlp4
pre-processor [dR03] allows the normal OCaml grammar to be arbitrarily extended,
and is an example of a heterogeneous syntax extension system in that the system doing
the extension is distinct from the system being extended. The MetaBorg system [BV04]
is a heterogeneous system that can be applied to any language; more sophisticated than
the Camlp4 pre-processor, from an external point of view it more closely resembles
Converge’s functionality, although the implementations and underlying philosophies
are still very different.

I am currently aware of only two homogeneous syntax extension systems apart
from Converge. Nemerle [SMO04] allows limited syntax extension via its macro
scheme. The commercial XMF tool [CESW04] presents only a small core grammar,
with many normal language concepts being grammar extensions on top of the core
grammar. Grammar extensions are compiled down into XMF’s AST. XMF is thus
much closer in spirit to Converge, although the example grammar extensions avail-
able suggest that XMF’s compile-time facilities may be less powerful than Converge’s,

38

Classifier
name : String

PrimitiveDataType Class
name : String

parents

Attribute
is_primary : bool
name : String

attrs

type

*{ordered}

*{ordered}

Figure 3: ‘Simple UML’ model.

seemingly being based on a simplified version of TH’s features. If true, this may limit
the complexity of the grammar extensions.

6 Modelling language DSL

This section presents an example of a Converge DSL for expressing typed modelling
languages; modelling languages can be instantiated create models. In its current sim-
plistic form, the modelling DSL operates with a fixed number of meta-levels in that
it defines modelling languages that can create models, but those models are terminal
instances (in ObjVLisp’s terminology) — that is, they can not be used to create new
objects.

This section serves as an example of Converge’s syntax extension system, and
fleshes out the method of section 5.1.

6.1 Example of use

The typed modelling language DSL is housed within the package TM; the DSL im-
plementation function model class is contained within the TM module within the
package. The following fragment uses the DSL to express a model of a simplified
UML-esque modelling language as shown in figure 3:

import TM.TM

$<TM.model_class>:
abstract class Classifier {

name : String;
}

class PrimitiveDataType extends Classifier { }

class Class extends Classifier {
parents : Seq(Class);
attrs : Seq(Attribute);

inv unique_names:
attrs->forAll(a1 a2 |

a1 != a2 implies a1.name != a2.name)
}

39

class Attribute {
name : String;
type : Classifier;
is_primary : bool;

}

Note that although this particular examples shows a model of a modelling language,
the DSL is capable of expressing any type of model.

The TM.model class DSL implementation function translates each class in
the model into a function in Converge which creates model objects. As a useful con-
venience, each constructor function takes arguments which correspond to the order
attributes are specified in the model class. If a model class has parents, their attributes
come first, and so on recursively. Model objects can have their slots accessed by name.
Note that since the modelling language is typed, setting attributes either via the con-
structor function or through assigning to a slot forces the value to be of the correct
type. Types can be of any model class (the DSL allows forward references), int,
String, bool (where true and false are represented by 1 and 0 respectively), or se-
quences or sets of the preceding types. Note that sequences and sets can be nested
arbitrarily. Model classes can contain invariants which are written in OCL; invariants
are checked after an object has been initialized with values, and on every subsequent
slot update. Currently only a subset of OCL 1.x is implemented, but the subset cov-
ers several different areas of OCL; implementing full OCL 1.x would be a relatively
simple extension.

Assuming the above is held in a file Simple UML.cv, one can then use the
use the Simple UML modelling language to create models. The following example
creates model classes Dog and Person, with Dog having an attribute owner of type
Person:

person := Simple_UML.Class("Person")
dog := Simple_UML.Class("Dog")
dog.attrs.append(Simple_UML.Attribute("owner", person, 0))

One can arbitrarily manipulate models in a natural fashion:

dog.name := "Doggy"

Attempting to update a model in a way that would conflict with its type information
results in an exception being raised. For example, attempting to assign an integer to the
Dog model class’ name raises the following exception:

Traceback (most recent call last):
File "Ex1.cv", line 42, column 4, in main
File "TM/TM.cv", line 162, column 5, in set_slot

Exception: Instance of ’Class’ expected object of type ’String’ for
slot ’name’.

In similar fashion, if one violates the unique names constraint by adding two at-
tributes called owner to the Dog model class, the following exception is raised:

Traceback (most recent call last):
File "Ex1.cv", line 45, column 17, in main
File "TM/TM.cv", line 327, column 31, in append
File "TM/TM.cv", line 407, column 3, in _class_class_check_invs

Exception: Invariant ’unique_names’ violated.

40

As can be seen, the result of using the TM.model class DSL is a natural embed-
ding of an arbitrary modelling language within Converge. Furthermore by recording,
and enforcing, type information using the modelling language DSL provides guaran-
tees about models that would not have been the case if they had been implemented as
normal Converge class’s. The typed modelling language DSL neatly sidesteps the data
representation problems found in typical GPL’s.

In the following sections I outline how this DSL is implemented.

6.2 Data model

The TM package provides its own ObjVLisp style data model which is similar to, but
distinct from, the Converge data model of section 2.4. The TM package needs to provide
a new data model since the default Converge data model is inherently untyped; whilst
figure 1 showed the core data model with types, such type information is purely for
the benefit of the reader. In contrast, the TM data model is inherently typed, and the
type information is used to enforce the correctness of models. The only exception to
this is that functions are currently untyped; it would be relatively simple to extend the
implementation to record and enforce functions’ type information.

Figure 4 shows the TM data model. As in Converge, a bootstrapping phase is needed
to set up the meta-circular data model. MObject and MClass are so named to avoid
clashing with the builtin classes Object and Class. Similarly, method and attribute
names which might conflict, or be confused with, those found in normal Converge
classes are named differently. For example init becomes initialize, to str

becomes to string and instance of becomes of. For brevity, and for easy in-
teraction with external code, the TM package does not directly replicate all builtin Con-
verge types such as strings; builtin Converge types are treated internally as instances of
MObject.

Once cosmetic differences between the two are ignored, some important differences
in the TM and Converge data models become apparent. Most importantly the TM data
model has the standard statically typed OO languages notions of separate methods and
attributes. TM mclasses are also different in that they can be abstract (i.e. can not be
directly instantiated) and have at most one super class. MObject classes possess a
mod id slot which is a unique identifier, and which is typed as String to allow
flexibility over the format of identifiers. The mod id slot plays an important rôle in
change propagating transformations.

As all this might suggest, the TM data model is intended to closely match the data
model found within statically typed OO languages such as Java than the. Since methods
and attributes are housed separately within classes, model instances require only a slot
per attribute; invoking a method on an object searches the objects of class (and its su-
perclasses) for an appropriate method. This is achieved by making use of the Converge
MOP (see section 2.7). Although the actual implementation is relatively complex, a
simplified version demonstrates the salient points. All model objects are instances of
the Converge class Raw Object which is initialized with a blank slot per attribute

41

of

MClass
attrs : Dict{String : MObject}

super_class

new_(*MObject) : MObject

invariants : Seq{MObject}
is_abstract : bool
methods : Dict{String : MObject}

name : String
check_invs() : void
initialize(*MObject) : void

MObject
mod_id : String

to_string() : String
initialize(*MObject) : void

0, 1

Figure 4: TM data model.

of a model class. The Converge MOP is overridden via a custom get slot func-
tion in the Raw Object class. If a slot name matches an attribute slot, that value
is returned. Otherwise the model objects of class and, if necessary its superclasses,
are searched for a method of the appropriate name. Finally, if a method is not found
then if the slot name matches that of a normal Converge slot in the Raw Object

instance, the value is returned; otherwise an exception is raised. The following, much
simplified, version of the code shows the skeleton of the Raw Object class and
part of its MOP:

1 class _Raw_Object:
2 func init(attr_names):
3 self._attr_slots := Dict{}
4 for attr_name := attr_names.iterate():
5 self._attr_slots[attr_name] := null
6

7 func get_slot(name):
8 if self._attr_slots.contains(name):
9 return self._attr_slots[name]

10 else:
11 class_ := self._attr_slots["of"]
12 while 1:
13 if class_.methods.contains(name):
14 return Func_Binding(self, class_.methods[name])
15 if (class_ = class_.super_class) == null:
16 break
17 if exbi Object.has_slot(name):
18 return exbi Object.get_slot(name)
19 else:
20 raise Exceptions.Slot_Exception(Strings.format(\
21 "No such model / Converge slot ’%s’", name))

A few notes are in order. Firstly the class variable on line 11 is so named since
class is a reserved keyword in Converge; by convention variable names are suffixed
by ‘ ’ if they would otherwise clash with a reserved word. Note that definitions pre-
fixed by ‘ ’ are conventionally considered to be private to the module or class they
are contained within. On line 14, the Func Binding class creates a binding which,
when invoked, will call the Converge function class .methods[name] with its
self variable bound to self (i.e. the Raw Object instance; see section 2.2 for
more details about functions and function bindings). The ability to create function

42

bindings in this fashion is an important feature of Converge, allowing a large deal of
control over the behaviour of objects.

The TM packages data model can be considered to be a suitable template for sug-
gesting how more powerful typed modelling languages – perhaps including packages
and package inheritance [ACE+02], or allowing classes to inherit from more than one
superclass) – might be naturally represented in a Converge DSL.

6.3 Pre-parsing and grammar

Before the TM.model class DSL can parse its input, it first iterates through the
input tokens searching for tokens which have type ID and value any of abstract,
and, at, collect, extends, forAll, implies, inv, Seq, Set. Such tokens
are replaced by a keyword token, whose type is the ID’s value. Furthermore since
the TM.model class DSL is intended to emulate typed languages such as C and
Java, it implements a white space insensitive grammar; thus all INDENT, DEDENT, and
NEWLINE tokens are removed from the input. The modified token list is then parsed
according to the following grammar:

top_level ::= { class }*

class ::= class_abstract "CLASS" "ID" class_super "{"
{ class_field }* "}"

class_abstract ::= "ABSTRACT"
::=

class_super ::= "EXTENDS" "ID"
::=

class_field ::= field_type
::= invariant

field_type ::= "ID" ":" type ";"

type ::= "ID"
::= "SEQ" "(" type ")"
::= "SET" "(" type ")"

invariant ::= "INV" "ID" ":" expr

expr ::= int
::= string
::= slot_lookup %precedence 20
::= application %precedence 15
::= binary %precedence 10
::= seq
::= set
::= "ID"

int ::= "INT"

string ::= "STRING"

slot_lookup ::= expr "." "ID"
::= expr "-" ">" forall
::= expr "-" ">" at
::= expr "-" ">" collect

forall ::= "FORALL" "(" "ID" "|" expr ")"
::= "FORALL" "(" "ID" "ID" "|" expr ")"

at ::= "AT" "(" expr ")"
collect ::= "COLLECT" "(" "ID" "ID" "=" expr "|" expr ")"

application ::= expr "(" expr { "," expr }* ")"
::= expr "(" ")"

43

binary ::= expr "+" expr %precedence 30
::= expr "-" expr %precedence 30
::= expr ">" expr %precedence 20
::= expr "<" expr %precedence 20
::= expr "==" expr %precedence 20
::= expr "!=" expr %precedence 20
::= expr "IMPLIES" expr %precedence 10
::= expr "AND" expr %precedence 10

seq ::= "SEQ" "{" expr ".." expr "}"
::= "SEQ" "{" expr { "," expr }* "}"
::= "SEQ" "{" "}"

set ::= "SET{" expr { "," expr }* "}"
::= "SET{" "}"

Most of this grammar is straightforward, although it is worth noting a few peculiari-
ties that result from the fact that tokenization is performed by the Converge tokenizer.
For example, ‘Set{’ is a single token (since Set{...} builds up a set in normal
Converge). The equivalent notation for sets is represented by two tokens: ‘Seq’ (a
new keyword introduced by the DSL) followed by ‘{’. Fortunately in practise, such
idiosyncrasies are largely hidden from, and irrelevant to, the DSL’s users.

6.4 Traversing the parse tree

The main part of the DSL implementation function is concerned with traversing the
parse tree, and translating it into an appropriate ITree. At a high-level, the translation
is fairly simple: each model class is converted into an object capable of creating model
instances. The CPK provides a simple traversal class (essentially a Converge equivalent
of that found in the SPARK parser [AH02]) which provides the basis for most such
translations. Users need only subclass the Traverser class and create a function
prefixed by t name for each rule in the grammar. The Traverser class provides
a preorder function will traverse an input parse tree in preorder fashion, calling the
appropriate t name function for each node encountered in the tree. Note that each
t name function can choose whether to invoke the preorder rule on sub-nodes,

or whether it is capable of processing the sub-nodes itself.
For example, the TM.model class function defines a traversal class Model Class Creator

which translates the DSL’s parse tree. An idealized version of the beginning of this
class looks as follows:

import CPK.Traverser

class Model_Class_Creator(Traverser.Traverser):
func translate():

return self.preorder()

func _t_top_level(node):
// top_level ::= { class }*
classes := []
for class_node := node[1 :].iterate()
classes.extend(self.preorder(class_node))

return classes

func _t_class(node):
// class ::= class_abstract "CLASS" "ID" class_super "{" {
// class_field }* "}"
...
return [|

44

class $<<CEI.name(node[3].value)>>:
...

|]

As this example shows, by automatically creating a parse tree and presenting a simple
but powerful mechanism for traversing that parse tree, the CPK imposes a low burden
on its users.

6.5 Translating

The actual translation of the parse tree to a ITree involves much repetition, and contains
implementation details which are irrelevant to this paper. The first point to note about
the translation is that the resulting ITree largely follows the structure of the parse tree.
Having the translation follow the structure of the parse tree is desirable because it
significantly lowers the conceptual burden involved in creating and comprehending the
translation.

In this subsection I highlight some interesting aspects of the translation; interested
readers can use this as a step to exploring the full translation in the TM package.

6.5.1 OCL expressions

Translating the OCL subset into Converge is a simple place to start in the translation
because it is mostly simple and repetitive. For example, converting binary expressions
from OCL into Converge is mostly a direct translation as the elided t binary

traversal function shows:

func _t_binary(node):
// binary ::= expr "+" expr
// ::= expr "<" expr
// ::= expr "==" expr
lhs := self.preorder(node[1])
rhs := self.preorder(node[3])
if node[2].type == "+":

return [| $<<lhs>> + $<<rhs>> |]
elif node[2].type == ">":

return [| $<<lhs>> > $<<rhs>> |]
elif node[2].type == "==":

return [|
func ocl_equals() {

lhs := $<<lhs>>
if lhs.conforms_to(Int) | lhs.conforms_to(String):

return lhs == $<<rhs>>
else:

return lhs is $<<rhs>>
}()

|]

Note that there is a slight complexity in translating the == operator, since OCL defines
equality between objects to be based on their value if they are a primitive type, and on
their identity if they are a model element. Whilst this is simple to encode as a sequence
of expressions, it slightly complicates the t class traversal function, which is
expected to a return only a single quasi-quoted expression. In order to work around
this limitation we combine the necessary sequence of instructions into a function; the
quasi-quotes returns the invocation of this function which is thus a single expression.
This idiom occurs frequently in the translation.

45

6.5.2 Forward references

Forward references between model classes might appear to slightly muddy the structure
of the translation. Consider the following example:

$<TM.model_class>:
class Dog {

owner : Person;
}

class Person {
name : String;

}

Assuming a simple translation, the result would be similar to the following converge
code:

class Dog:
attributes := Dict{"owner" : Person}
name := "Dog"

class Person:
attributes := Dict{"name" : String}
name := "Person"

Such code would compile correctly, but lead to an exception being raised at run-time
since the Person class will not have assigned a value to the Person variable when
it is accessed in the Dog class. A standard approach to this problem would be to make
the attributes field a function; by placing the reference to Person a function, the
variable access would be deferred until after the Person variable contained a value.

The TM.model class DSL takes an alternative approach which is simplistic
and, whilst not generally applicable, effective. Essentially the TM module keeps a
record of all model classes encountered. When a new model class is created (i.e. when
importing a model containing a TM.model class block), it registers itself with the
TM module. Rather than directly referring to model classes, type references are strings
of the target model class name – when a model class needs to be retrieved, its name
is looked up in the TM registry, and the appropriate object returned. Thus forward
references are a non-issue, since references are only resolved when necessary.

The reason the TM.model class DSL takes this approach is that all model
classes live in the same namespace; when we come to transforming model elements
it aids brevity that model classes do not need to be prefixed by a package or module
name.

6.5.3 Model class translation

The suggestion up to this point has largely been that model classes have been directly
translated to normal Converge classes. In fact, model classes are instances of the
MClass class. Whilst this would suggest that we can use the metaclass keyword
shown in section 2.4, this is not possible since MClass requires more information than
a normal Converge class. Normal Converge classes take only three parameters name,
supers, fields whereas a model class requires information about whether it is

46

abstract, its invariants and so on. It is thus necessary to create the class manually. For-
tunately this is relatively simple largely because the bound func keyword allows
bound functions to be expressed outside a class.

A much elided, and slightly simplified, version of the t class traversal func-
tion is as follows:

is abstract := bool
class name := String
super := String or null
attrs := Dict{name : type}
invariants := List of tuples [name, function]
operations := List of tuples [name, function]

init func var := CEI.ivar(CEI.fresh name())

return [d|
bound func initialize(*args):

super attrs := all attrs($<<super >>, 1)
if args.len() > (super attrs.len() + \

$<<CEI.lift(attrs.len())>>):
raise Exceptions.Parameters Exception("Too many args")

super args pos := Maths.min(super attrs.len(), args.len())
Func Binding(self, $<<super >>.methods["initialize"]). \

apply(args[: super args pos])
$<<init func body>>

$<<CEI.ivar(CEI.name(class name))>> := MClass(\
$<<is abstract>>, $<<CEI.lift(class name)>>, \
$<<super >>, $<<CEI.lift(attrs)>>, \
$<<CEI.idict(operations + [[CEI.lift("initialize"), \
init func var]])>>, $<<CEI.ilist(invariants)>>)

|]

Essentially the t class traversal function first evaluates and transforms the details
of the model class, placing information such as whether the class is abstract into ap-
propriately named variables. Finally it returns quasi-quoted code which contains two
things: a function to initialize model class instances, and finally the instantiation of
MClass itself. The arguments that MClass itself requires are hopefully obvious due
to the names of the variables passed to it in this example.

6.5.4 Summary of translation

Whilst this section has tersely presented the translation of a TM.model class block,
I hope that it shows enough detail to suggest that the bulk of the translation is simple
work, with only one or two areas requiring the use of more esoteric Converge features.
Section B shows the pretty printed ITree resulting from the translation of the example
in section 6.1.

6.6 Diagrammatic visualization

A useful additional feature of the TM package is its ability to visualize modelling
languages and model languages as diagrams. Visualization makes use of the fact

47

that the TM data model is fully reflective, making the traversal and querying of ob-
jects trivial. The Visualizer module defines several visualization functions, all
of which use the GraphViz package [GN00] to create diagrams. For example, the
visualize modelling language function takes a list of model classes, and
visualizes them as a standard class diagram. Figure 5 shows the automatic visualiza-
tion of the Simple UML modelling language originally shown in figure 3. Note that
the modelling language visualization function explicitly shows that all model classes
are subclasses of MObject.

MObject

mod_id : String

to_string()
initialize()

of

Classifier

name : String

initialize()

Attribute

is_primary : bool
name : String

initialize()

PrimitiveDataType

initialize()

Class

initialize()

parents
* ordered

attrs
* ordered

type

Figure 5: ‘Simple UML’ modelling language visualized.

The Visualizer is also able to visualize models as UML object diagrams. Figure 6
shows the visualization of the following module:

person := Simple_UML.Class("Person")
dog := Simple_UML.Class("Dog")
dog.attrs.append(Simple_UML.Attribute("owner", person, 0))

7 Future work

Because the core of Converge is a mix of established languages, the core language is
largely stable. The implementation of the compile-time meta-programming facilities
is currently less than satisfactory in one or two areas, but is eminently usable. One
feature in particular that appears to be confuse new users to the language relates to the
very different effects of the splice annotation. The syntax, inherited from Template

48

:Class

mod_id = "9"
name = "Dog"

:Attribute

mod_id = "10"
is_primary = 0
name = "owner"

attrs

:Class

mod_id = "8"
name = "Person"

type

Figure 6: A ‘Simple UML’ model language visualized.

Haskell, means that $ behaves very differently when inside (a simple replacement of
the splice annotation) and outside (cause compile-time evaluation) quasi-quotes. A
simple change of syntax may suffice to solve this problem, or it may be considered
to be an inevitable part of the learning curve that compile-time meta-programming
presents.

Although Converge’s error reporting facilities are at least as good as any compara-
ble language, there is still room for considerable improvement from the users point of
view. Although section 3.13 used nested quasi-quotes to customise error reports, it may
be necessary to find a lighter weight technique if DSL authors are to be encouraged to
provide high quality error reporting.

The syntax extension feature presents the greatest opportunity for future work. The
most obvious improvement would be to allow the user to provide their own tokenization
facility. This may result in simply passing a single string to the DSL implementation
function, or it may involve a more sophisticated interaction between the Converge to-
kenizer and parser and the DSL tokenizer and parser. For example parsing algorithms
such as Pack Rat parsing [For02] allow the conflation of tokenizing and parsing in a
way that might lend themselves to syntax extension.

8 Acknowledgments

This work has been funded by a grant from Tata Consultancy Services. My thanks to
Kelly Androutsopoulos for insightful comments on an early draft of part of this paper.

49

A Converge grammar

This section lists the CPK grammar for Converge. This is extracted directly from the
Converge compiler file Compiler/CV Parser.cv:

top_level ::= definition { "NEWLINE" definition }*
::=

definition ::= class_def
::= func_def
::= import
::= var { "," var }* ":=" expr
::= splice

import ::= "IMPORT" dotted_name import_as { "," dotted_name
import_as }*

dotted_name ::= "ID" { "." "ID" }*
import_as ::= "AS" "ID"

::=

class_def ::= "CLASS" class_name class_supers class_metaclass ":"
"INDENT" class_fields "DEDENT"

class_name ::= "ID"
::= splice

class_supers ::= "(" expr { "," expr }* ")"
::=

class_metaclass ::= "METACLASS" expr
::=

class_fields ::= class_field { "NEWLINE" class_field }*
class_field ::= class_def

::= func_def
::= var ":=" expr
::= splice
::= "PASS"

func_def ::= func_type func_name "(" func_params ")" ":"
"INDENT" func_nonlocals expr_body "DEDENT"

::= func_type func_name "(" func_params ")" "{"
"INDENT" func_nonlocals expr_body "DEDENT"
"NEWLINE" "}"

func_type ::= "FUNC"
::= "BOUND_FUNC"
::= "UNBOUND_FUNC"

func_name ::= "ID"
::= "+"
::= "-"
::= "/"
::= "*"
::= "<"
::= ">"
::= "=="
::= "!="
::= ">="
::= "<="
::= splice
::=

func_params ::= func_params_elems "," func_varargs
::= func_params_elems
::= func_varargs
::=

func_params_elems ::= var func_param_default { "," var
func_param_default }*

::= splice
func_param_default ::= ":=" expr

::=
func_varargs ::= "*" var

::= splice
func_nonlocals ::= "NONLOCAL" "ID" { "," "ID" }* "NEWLINE"

::=

expr_body ::= expr { "NEWLINE" expr }*

50

expr ::= class_def
::= func_def
::= while
::= if
::= for
::= try
::= number
::= var
::= dict
::= set
::= list
::= dict
::= string
::= slot_lookup %precedence 50
::= list
::= application %precedence 40
::= lookup %precedence 40
::= slice %precedence 40
::= exbi
::= return
::= yield
::= raise
::= assert
::= break
::= continue
::= conjunction %precedence 10
::= alternation %precedence 10
::= assignment %precedence 15
::= not %precedence 17
::= neg %precedence 35
::= binary %precedence 30
::= comparison %precedence 20
::= pass
::= import
::= splice %precedence 100
::= quasi_quotes
::= brackets

if ::= "IF" expr ":" "INDENT" expr_body "DEDENT" { if_elif }*
if_else

::= "IF" expr "{" "INDENT" expr_body "DEDENT" "NEWLINE" "}"
{ if_elif }* if_else

if_elif ::= "NEWLINE" "ELIF" expr ":" "INDENT" expr_body "DEDENT"
::= "NEWLINE" "ELIF" expr "{" "INDENT" expr_body "DEDENT"

"NEWLINE" "}"
if_else ::= "NEWLINE" "ELSE" ":" "INDENT" expr_body "DEDENT"

::= "NEWLINE" "ELSE" "{" "INDENT" expr_body "DEDENT" "NEWLINE"
"}"

::=

while ::= "WHILE" expr ":" "INDENT" expr_body "DEDENT" exhausted broken
::= "WHILE" expr

for ::= "FOR" expr ":" "INDENT" expr_body "DEDENT" exhausted broken
::= "FOR" expr

try ::= "TRY" ":" "INDENT" expr_body "DEDENT" { try_catch }*
try_else

try_catch ::= "NEWLINE" "CATCH" expr try_catch_var ":" "INDENT"
expr_body "DEDENT"

try_catch_var ::= "INTO" var
::=

try_else ::= "NEWLINE" "ELSE" ":" "INDENT" expr_body "DEDENT"
::=

exhausted ::= "NEWLINE" "EXHAUSTED" ":" "INDENT" expr_body "DEDENT"
::=

broken ::= "NEWLINE" "BROKEN" ":" "INDENT" expr_body "DEDENT"
::=

number ::= "INT"

var ::= "ID"

51

::= "&" "ID"
::= splice

string ::= "STRING"

slot_lookup ::= expr "." "ID"
::= expr "." splice

list ::= "[" expr { "," expr }* "]"
::= "[" "]"

dict ::= "DICT{" expr ":" expr { "," expr ":" expr }* "}"
::= "DICT{" "}"

set ::= "SET{" expr { "," expr }* "}"
::= "SET{" "}"

application ::= expr "(" expr { "," expr }* ")"
::= expr "(" ")"

lookup ::= expr "[" expr "]"

slice ::= expr "[" expr ":" expr "]"
::= expr "[" ":" expr "]"
::= expr "[" expr ":" "]"
::= expr "[" ":" "]"

exbi ::= "EXBI" expr "." "ID"

return ::= "RETURN" expr
::= "RETURN"

yield ::= "YIELD" expr

raise ::= "RAISE" expr

assert ::= "ASSERT" expr

break ::= "BREAK"

continue ::= "CONTINUE"

conjunction ::= expr "&" expr { "&" expr }*

alternation ::= expr "|" expr { "|" expr }*

assignment ::= assignment_target { "," assignment_target }*
assignment_type expr

assignment_target ::= var
::= slot_lookup
::= lookup
::= slice

assignment_type ::= ":="
::= "*="
::= "/="
::= "+="
::= "-="

not ::= "NOT" expr

neg ::= "-" expr

binary ::= expr binary_op expr
binary_op ::= "*" %precedence 40

::= "/" %precedence 30
::= "%" %precedence 30
::= "+" %precedence 20
::= "-" %precedence 20

comparison ::= expr comparison_op expr
comparison_op ::= "IS"

::= "=="
::= "!="
::= "<="

52

::= ">="
::= "<"
::= ">"

pass ::= "PASS"

splice ::= expr_splice
::= block_splice

expr_splice ::= "$" "<" "<" expr ">" ">"
block_splice ::= "$" "<" expr ">" ":" "INDENT" "JUMBO" "DEDENT"

quasi_quotes ::= expr_quasi_quotes
::= defn_quasi_quotes

expr_quasi_quotes ::= "[|" "INDENT" expr { "NEWLINE" expr }* "DEDENT"
"NEWLINE" "|]"

::= "[|" expr { "NEWLINE" expr }* "|]"
defn_quasi_quotes ::= "[D|" definition { "NEWLINE" definition }* "|]"

::= "[D|" "INDENT" definition { "NEWLINE" definition }*
"DEDENT" "NEWLINE" "|]"

brackets ::= "(" expr ")"

B The ‘Simple UML’ modelling language translation

The following is the pretty printed ITree that results from translating the Simple UML
modelling language shown in section 6.1:

Simple_UML.cvb Simple_UML.cv
$$1$$:= bound_func initialize_Classifier(*args){

super_attrs := TM._all_attrs(TM.MObject, 1)
if args.len() > super_attrs.len() + 1:

raise TM.Exceptions.Parameters_Exception("Too many args")
super_args_pos := TM.Maths.min(super_attrs.len(), args.len())
TM.Func_Binding(self, TM.MObject.methods["initialize"]).apply(args[0 : \

super_args_pos])
if 0 < args.len() - super_args_pos:

self.name := args[super_args_pos + 0]
}

Classifier := TM.MClass(1, "Classifier", TM.MObject, Dict{"name" : [3]}, \
["name"], Dict{"initialize" : $$1$$}, [])

$$2$$:= bound_func initialize_PrimitiveDataType(*args){
super_attrs := TM._all_attrs(TM._CLASSES_REPOSITORY["Classifier"], 1)
if args.len() > super_attrs.len() + 0:

raise TM.Exceptions.Parameters_Exception("Too many args")
super_args_pos := TM.Maths.min(super_attrs.len(), args.len())
TM.Func_Binding(self, TM._CLASSES_REPOSITORY["Classifier"]. \

methods["initialize"]).apply(args[0 : super_args_pos])
}

PrimitiveDataType := TM.MClass(0, "PrimitiveDataType", \
TM._CLASSES_REPOSITORY["Classifier"], Dict{}, [], Dict{"initialize" : $$2$$}, [])

$$3$$:= bound_func initialize_Class(*args){
super_attrs := TM._all_attrs(TM._CLASSES_REPOSITORY["Classifier"], 1)
if args.len() > super_attrs.len() + 2:

raise TM.Exceptions.Parameters_Exception("Too many args")
super_args_pos := TM.Maths.min(super_attrs.len(), args.len())
TM.Func_Binding(self, TM._CLASSES_REPOSITORY["Classifier"]. \

methods["initialize"]).apply(args[0 : super_args_pos])
if 0 < args.len() - super_args_pos:

self.parents := args[super_args_pos + 0]
if 0 >= args.len() - super_args_pos:

self.parents := TM.TM_List(self)
if 1 < args.len() - super_args_pos:

self.attrs := args[super_args_pos + 1]
if 1 >= args.len() - super_args_pos:

self.attrs := TM.TM_List(self)
}

53

Class := TM.MClass(0, "Class", TM._CLASSES_REPOSITORY["Classifier"], \
Dict{"parents" : [0, "Class"], "attrs" : [0, "Attribute"]}, ["parents", \
"attrs"], Dict{"initialize" : $$3$$}, [["unique_names", \

unbound_func unique_names(self){
return unbound_func ocl_for(){

expr := self.attrs
for a1 := expr.iterate():
for a2 := expr.iterate():

if not unbound_func ocl_implies(){
if not unbound_func ocl_not_equals(){
lhs := a1
if lhs.conforms_to(TM.Int) | lhs.conforms_to(TM.String):

return lhs != a2
else:

return not lhs is a2
}():
return 1

if unbound_func ocl_not_equals(){
lhs := a1.name
if lhs.conforms_to(TM.Int) | lhs.conforms_to(TM.String):

return lhs != a2.name
else:

return not lhs is a2.name
}():
return 1

return TM.fail
}():

return TM.fail
return 1

}()
}]])

$$4$$:= bound_func initialize_Attribute(*args){
super_attrs := TM._all_attrs(TM.MObject, 1)
if args.len() > super_attrs.len() + 3:

raise TM.Exceptions.Parameters_Exception("Too many args")
super_args_pos := TM.Maths.min(super_attrs.len(), args.len())
TM.Func_Binding(self, TM.MObject.methods["initialize"]).apply(args[0 : \

super_args_pos])
if 0 < args.len() - super_args_pos:

self.name := args[super_args_pos + 0]
if 1 < args.len() - super_args_pos:

self.type := args[super_args_pos + 1]
if 2 < args.len() - super_args_pos:

self.is_primary := args[super_args_pos + 2]
}

Attribute := TM.MClass(0, "Attribute", TM.MObject, Dict{"name" : [3], \
"type" : "Classifier", "is_primary" : [5]}, ["name", "type", "is_primary"], \
Dict{"initialize" : $$4$$}, [])

54

References

[AC96] Martı́n Abadi and Luca Cardelli. A Theory of Objects. Springer, 1996.

[ACE+02] Biju Appukuttan, Tony Clark, Andy Evans, Stuart Kent, Girish Maskeri,
Paul Sammut, Laurence Tratt, and James S. Willans. Unambiguous uml
submission to uml 2 infrastructure rfp, September 2002. OMG document
ad/2002-06-14.

[AH02] John Aycock and R. Nigel Horspool. Practical earley parsing. The Com-
puter Journal, 45(6):620–630, 2002.

[Baw99] Alan Bawden. Quasiquotation in lisp. Workshop on Partial Evaluation
and Semantics-Based Program Manipulation, January 1999.

[Baw00] Alan Bawden. First-class macros have types. In Proc. 27th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 133–141, January 2000.

[BC89] Jean-Pierre Briot and Pierre Cointe. Programming with explicit meta-
classes in Smalltalk-80. In Proc. OOPSLA ’89, October 1989.

[BP99] Jonathan Bachrach and Keith Playford. D-
expressions: Lisp power, dylan style, 1999.
http://www.ai.mit.edu/people/jrb/Projects/dexprs.pdf Accessed
Sep 22 2004.

[BP01] Jonathan Bachrach and Keith Playford. The java syntactic extender (jse).
In Proc. OOPSLA, pages 31–42, November 2001.

[BS00] Claus Brabrand and Michael Schwartzbach. Growing languages with
metamorphic syntax macros. In Workshop on Partial Evaluation and

Semantics-Based Program Manipulation, SIGPLAN. ACM, 2000.

[BV04] Martin Bravenboer and Eelco Visser. Concrete syntax for objects.
Domain-specific language embedding and assimilation without restric-
tions. In Douglas C. Schmidt, editor, Proc. OOPSLA’04, Vancouver,
Canada, October 2004. ACM SIGPLAN.

[CESW04] Tony Clark, Andy Evans, Paul Sammut, and James Willans. Applied
metamodelling: A foundation for language driven development, Septem-
ber 2004. Available from http://www.xactium.com/ Accessed Sep 22
2004.

[CJOT04] Krzysztof Czarnecki, Jörg Striegnitz John O’Donnell, and Walid Taha.
DSL implementation in MetaOCaml, Template Haskell, and C++.
3016:50–71, 2004.

55

[CMA93] Luca Cardelli, Florian Matthes, and Martı́n Abadi. Extensible gram-
mars for language specialization. In Proc. Fourth International Workshop
on Database Programming Languages - Object Models and Languages,
pages 11–31, August 1993.

[Coi87] Pierre Cointe. Metaclasses are first class: the ObjVLisp model. In Object
Oriented Programming Systems Languages and Applications, pages 156–
162, October 1987.

[DGR01] Olivier Danvy, Bernd Grobauer, and Morten Rhiger. A unifying approach
to goal-directed evaluation. New Generation Computing, 20(1):53–73,
Nov 2001.

[DHB92] R. Kent Dybvig, Robert Hieb, and Carl Bruggeman. Syntactic abstraction
in scheme. In Lisp and Symbolic Computation, volume 5, pages 295–326,
December 1992.

[DM95] François-Nicola Demers and Jacques Malenfant. Reflection in logic, func-
tional and object-oriented programming: a short comparative study. In
Proc. IJCAI’95 Workshop on Reflection and Metalevel Architectures and

Their Applications in AI, pages 29–38, August 1995.

[dR03] Daniel de Rauglaudre. Camlp4 - Reference Manual, September 2003.
http://caml.inria.fr/camlp4/manual/ Accessed Sep 22 2004.

[Ear70] Jay Earley. An efficient context-free parsing algorithm. Communications
of the ACM, 13(2), February 1970.

[EBN02] Michael D. Ernst, Greg J. Badros, and David Notkin. An empirical anal-
ysis of C preprocessor use. IEEE Transactions on Software Engineering,
2002.

[For02] Bryan Ford. Packrat parsing: Simple, powerful, lazy, linear time. In Inter-
national Conference on Functional Programming, pages 36–47, October
2002.

[GG93] Ralph E. Griswold and Madge T. Griswold. History of the Icon program-
ming language. j-SIGPLAN, 28(3):53–68, March 1993.

[GG96a] Ralph E. Griswold and Madge T. Griswold. The Icon Programming Lan-
guage. Peer-to-Peer Communications, third edition, 1996.

[GG96b] Ralph E. Griswold and Madge T. Griswold. The Implementation of the

Icon Programming Language. Peer-to-Peer Communications, third edi-
tion, 1996.

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-
sign Patterns: Elements of Reusable Object-Orientated Software. Addi-
son Wesley, 1994.

56

[GN00] Emden R. Gansner and Stephen C. North. An open graph visualization
system and its applications to software engineering. Software – Practice
and Experience, 30(11):1203–1233, 2000.

[GR89] Adele Goldberg and David Robson. Smalltalk-80: The Language.
Addison-Wesley, January 1989.

[GST01] Steven E. Ganz, Amr Sabry, and Walid Taha. Macros as multi-stage com-
putations: Type-safe, generative, binding macros in macroml. In Proc.
International Conference on Functional Programming (ICFP), volume 36
of SIGPLAN. ACM, September 2001.

[Gud92] David A. Gudeman. Denotational semantics of a goal-directed language.
ACM Transactions on Programming Languages and System, 14(1):107–
125, January 1992.

[Jaf03] Aubrey Jaffer. SCM Scheme Implementation, November 2003.
http://www.swiss.ai.mit.edu/˜jaffer/scm toc Accessed Sep 16
2004.

[Jef02] Clinton L. Jeffery. Godiva Language Reference Manual, November 2002.
http://www.cs.nmsu.edu/˜jeffery/godiva/godiva.html.

[JMPP03] Clinton Jeffery, Shamim Mohamed, Ray Pereda, and
Robert Parlett. Programming with Unicon, April 2003.
http://unicon.sourceforge.net/book/ub.pdf.

[KCR98] Richard Kelsey, William Clinger, and Jonathan Rees. Revised(5) report
on the algorithmic language Scheme. Higher-Order and Symbolic Com-

putation, 11(1):7–105, 1998.

[KdRB91] Gregor Kiczales, Jim des Rivieres, and Daniel G. Bobrow. The Art of the
Metaobject Protocol. MIT Press, 1991.

[KFFD86] Eugene Kohlbecker, Daniel P. Friedman, Matthias Felleisen, and Bruce
Duba. Hygienic macro expansion. In Symposium on Lisp and Functional
Programming, pages 151–161. ACM, 1986.

[Pro97] Todd A. Proebsting. Simple translation of goal-directed evaluation. In
SIGPLAN Conference on Programming Language Design and Implemen-

tation, pages 1–6, 1997.

[Que96] Christian Queinnec. Macroexpansion reflective tower. In Proc. Reflec-
tion’96, pages 93–104, April 1996.

[Sch] Friedrich Wilhelm Schröer. The ACCENT Grammar Language.
http://accent.compilertools.net/language.html Accessed Jan 25
2005.

57

[SCK03] Sean Seefried, Manuel M. T. Chakravarty, and Gabriele Keller. Optimis-
ing embedded DSLs using Template Haskell. In Draft Proc. Implementa-
tion of Functional Languages, 2003.

[SeABP99] Tim Sheard, Zine el Abidine Benaissa, and Emir Pasalic. DSL imple-
mentation using staging and monads. In Proc. 2nd conference on Domain

Specific Languages, volume 35 of SIGPLAN, pages 81–94. ACM, October
1999.

[SJ02] Tim Sheard and Simon Peyton Jones. Template meta-programming for
Haskell. In Proceedings of the Haskell workshop 2002. ACM, 2002.

[SMO04] Kamil Skalski, Michal Moskal, and Pawel Olszta. Meta-programming in
Nemerle, 2004. http://nemerle.org/metaprogramming.pdf Accessed
Oct 1 2004.

[Ste99] Guy L. Steele, Jr. Growing a language. Higher-Order and Symbolic Com-
putation, 12(3):221 – 236, October 1999.

[Tah99] Walid Taha. Multi-Stage Programming: Its Theory and Applications.
PhD thesis, Oregon Graduate Institute of Science and Technology, Oc-
tober 1999.

[TH00] David Thomas and Andrew Hunt. Programming Ruby: A Pragmatic Pro-
grammer’s Guide. Addison-Wesley, 2000.

[Vel95] Todd Veldhuizen. Using C++ template metaprograms. C++ Report,
7(4):36–43, May 1995.

[vR03] Guido van Rossum. Python 2.3 reference manual, 2003.
http://www.python.org/doc/2.3/ref/ref.html Accessed Sep 23
2004.

[WC93] Daniel Weise and Roger Crew. Programmable syntax macros. In Proc.
SIGPLAN, pages 156–165, 1993.

58

