SoSYM manuscript No.
(will be inserted by the editor)

Model transformations and tool integration

Laurence Tratt

Department of Computer Science, King’s College London, Strand, London, WC2R 2LS.

e-mail: laurie@tratt.net

June 14, 2004

Abstract Model transformations are increasingly recog-
nised as being of significant importance to many areas of
software development and integration. Recent attention
on model transformations has particularly focused on
the OMG’s Queries / Views / Transformations (QVT)
Request for Proposals (RFP). In this paper I motivate
the need for dedicated approaches to model transforma-
tions, particularly for the data involved in tool integra-
tion, outline the challenges involved, and then present
a number of technologies and techniques which allow
the construction of flexible, powerful and practical model
transformations.

Key words
formations — QVT — Tool integration

1 Introduction

In recent years the movement towards developing soft-
ware with the use of models has increased rapidly. Or-
ganizations are increasingly seizing the opportunity to
move their intellectual property and business logic from
source code into models, allowing them to focus on the
important aspects of their systems, which have tradition-
ally been buried — and sometimes lost — in the mélange
resulting from the use of standard programming lan-
guages. The introduction of models has opened up new
possibilities for creating, analyzing, and manipulating
systems through various types of tools. However the in-
creasing availability of tools which operate on models
has raised a new challenge: individual tools tend to only
operate on models that conform to their own internal
format, meaning that models created in one tool are
rarely easily exportable to other tools. Not only have
users found themselves locked into using their models
with a single tool throughout the entire life-cycle, but the

Modelling — Transformations — Model trans-

opportunity to harness the power and individual abili-
ties of different tools as part of a tool chain has thus far
been largely missed.

Model transformations are the key to solving this
very fundamental problem, which also goes to the very
heart of the OMG’s Model Driven Architecture (MDA)
initiative [12,23]. The existence of practical model trans-
formation technologies will not only free users from tool
lock-in, but more importantly facilitate the seamless trans-
fer of models to and from specialized tools during the
development life-cycle. A simple definition of a model
transformation is that it is a program which mutates
one model into another; in other words, something akin
to a compiler. Of course, if this simple description accu-
rately described model transformations, then we would
be faced with a relatively simple and uninteresting prob-
lem to solve. In reality, model transformations are re-
quired to perform far more complex tasks — for example,
when integrating tools it is frequently required that af-
ter an initial transformation of a model from one tool to
another, subsequent changes are propagated in a non-
destructive manner. Furthermore using standard pro-
gramming languages and libraries to write even sim-
ple model transformations is a challenging, tedious and
error-prone task. Model transformations need specialised
support in several aspects in order to realise their full
potential, for both the end-user and transformation de-
veloper.

In this paper I aim to give the reader a feel for the
problem that model transformations are meant to solve,
with particular emphasis on their applicability to the
data involved in tool integration; the background and
scope of model transformations including work related
to the QVT RFP; finally I present a number of tech-
nologies and techniques which allow the construction of
flexible, powerful and practical model transformations
which can aid tool integration throughout the develop-
ment life cycle.

1.1 Simple example

Figure 1 shows the metamodels of two similar modelling
languages which will be used in most of the examples
in this paper. In the interests of brevity I do not for-
mally define the semantics of these languages, assuming
that equivalent elements in either modelling language
have the same semantics unless otherwise stated. The
modelling language MLI in figure 1(a) supports directed
associations and package inheritance, a mechanism for
structuring models — see [5] for an example of a mod-
elling language with package inheritance. For the pur-
poses of this example, a package A which inherits from
a package B is considered to posses a copy of all the el-
ements in B. Figure 1(b) shows the modelling language
ML2, which does not provide support for package inheri-
tance but allows undirected associations. Because of the
large overlap between the two metamodels, many mod-
els can be instances of either metamodel; however some
models will make use of the conflicting features of one or
the other modelling language and are thus not directly
interchangeable. This is very representative of the real
world where two modelling tools store and manipulate
models in only marginally different fashions, yet still end
up preventing users from interchanging their models be-
tween them.

Figure 2(a) shows a typical example of package in-
heritance in a simple model of a company where dif-
ferent aspects of the company have been separated into
separate packages to aid comprehension. The Company
package then inherits the relevant sub-packages to cre-
ate one package which contains all the relevant parts of
the company model. Because this model makes use of
package inheritance it can only be an instance of the
ML1 modelling language. Thus any tool which under-
stands the ML2 modelling language will not be able to
interpret it correctly because of the package inheritance
involved. Intuitively the solution is simple — the ML2
version of the model in figure 2(a) is one with all the
relevant model elements copied down from the inherited
packages. Figure 2(b) shows such a model created by
hand (with redundant packages removed from the dia-
gram in the interests of brevity). Since this is a tedious
task, the problem is how to automate this process.

Any first attempt at model transformations is likely
to be in a standard programming language. A relatively,
but not completely, naive attempt, expressed in a fairly
high-level pseudo-code, might look as follows':

func transform(element:ML1.Element):M2.Element:
if type(element) == ML1.Package:
package_elements := []
for package_element in element.elements:
package_elements.append(\
transform(package_element))

1A backslash ‘\’ at the end of a line indicates that a single
logical line is split over multiple physical lines.

Laurence Tratt

ML1
from
. to
| parents parents |
Package Class Association
name : String name : String name : String

(a) The ML1 modelling language.

ML2
= end2
| parents |
Package Class Association
name : String name : String name : String
end1_directed : Bool
end2_directed : Bool

(b) The ML2 modelling language.

Fig. 1 Language metamodels.

Sales Stock
|Customer|%e’i| Order| | Item |—|Manufacturer
a [

Company

(a) Company model with package inheritance.

Company

|Customer|%e'§| 0rder| | Item |—|Manufacturer

(b) Company model without package inheritance.

Fig. 2 Example models.

parents_temp := element.parents.copy()
for parent in parents_temp:
for parent_element in parent.elements:
package_elements.append(\
transform(parent_element))
parents_temp.extend(\
parent_element.parents)
return new M2.Package(element.name, \
package_elements)
elif type(element) == ML1l.Class:
parents := []
for parent in element.parents:
parents.append(transform(parent))
return new ML2.Class(element.name, parents))
elif type(element) == ML1.Association:
return new ML2.Association(element.name, \
transform(element.from), \
transform(element.to), true, false)

func main(model_in:Seq{ML1.Element}) :Void:
model_out := []
for element in model_in:
model_out .append (transform(element))

Model transformations and tool integration

The essential idea here is to transform every element
that is an instance of the MLI language into its coun-
terpart in the ML2 language; elements from inherited
packages are bought into the child packages and the
package inheritance itself disappears. This approach has
two immediate, and closely related, problems: elements
can easily be duplicated during the transformation e.g.
if a class S is specialized by two other classes then two
copies of S will appear in the target model; cycles in
the model created by associations between two classes
cause the transformation to loop without terminating.
A less concrete problem is that the transformation has
been squeezed into one function, which grates against
software engineering principles.

In order to overcome the flaws present in a relatively
simple solution such as this, one has to add increasing
amounts of machinery e.g. to keep track of which ele-
ments have already been transformed. Although space
does not permit a detailed example, the necessary ma-
chinery for this and other such aspects, combined with
the necessity for the machinery to pervade every aspect
of the transformation, can quickly lead to the substance
of the underlying transformation being swamped. This
leads to the starting assumption for this, and most other,
model transformation work: model transformations can
not be sensibly written in a standard programming lan-
guage, object orientated (OO) or otherwise.

1.2 Enabling a tool chain

In the previous section, I motivated the need for model
transformations by exploring the need to perform a trans-
formation between models stored in different tools, and
the difficulties in trying to write such a transformation in
a standard programming language. I classify the trans-
formation example presented as a unidirectional stateless
transformation. It is unidirectional because it can only
transform an instance of ML1 into an instance of ML2.
It is stateless because running the transformation when
the source model has changed results in the creation of
an entirely new target model even if it is an exact du-
plicate of the one that already exists. Although such a
transformation can be of practical use in integrating to-
gether different tools, it tackles only part of the problem.

One enticing future scenario is when tools which spe-
cialize in different aspects of modelling can be used to-
gether throughout the development life cycle e.g. a UML
modelling tool UT and a Java modelling tool JT. In
such a scenario, a model is not just transformed be-
tween different tools once, but may be edited multiple
times in each tool. For example, an initial model may
be created in UT, transformed and subsequently edited
in JT before high-level architectural changes are applied
in UT which one expects to see reflected in JT. A simi-
lar, although more linear, scenario involving incremental
model development is explained in Becker et. al [8]. The

general aim underlying such scenarios is to allow the user
to leverage different tools specialities at varying points
in the development life cycle.

It is important to note that the scenario given here is
deliberately limited compared to the general case. It calls
only for changes in UT to be propagated to JT, not vice
versa. A solution for the general case would utilize a bidi-
rectional transformation that could also propagate any
relevant changes made in JT to UT. True bidirectional
transformations present a number of challenges above
and beyond those tackled in this paper, and by most
current model transformation technologies, and are con-
sequently largely ignored in this paper — however all of
the challenges listed here apply equally to bidirectional
transformations.

The significant challenge raised by this scenario can
be seen in figure 3. Imagine we have the model in figure
3(a), an instance of the ML2 modelling language, in a
tool MT?2, and then transform it into an instance of the
ML1 modelling language for use in another tool MT1.
The result of the transformation from ML2 to ML1 is
shown in figure 3(b), which contains two directed as-
sociations. Now if the user changes the model in MT?2,
what might the result be on the model in MT1? The
example presented in the previous section would simply
wipe whatever was in MT1 and create an entirely fresh
model. This might be acceptable in some very limited
circumstances, but not if one has added extra detail into
the model in MT1 which must not be wiped, as in the
UT and JT example.

A more sophisticated approach would be for the trans-
formation to attempt to perform the minimum alteration
to the target model to propagate the changes, leaving it
otherwise intact. In order to do this, the transformation
needs to somehow recognise those elements in the model
in MT2 which relate to those in MT1 and use, or change,
them appropriately. This initially seems fairly trivial —
for example the Employee class is obviously shared in
both models. However, consider the bidirectional asso-
ciation in MT2 which is non-trivially related to two di-
rected associations in M7T1 — how should a transforma-
tion recognise such a relationship? One could discover
in an MT2 model a pair of directed associations which
because of their names appear to correspond to a bidi-
rectional association in MT'1, but such correspondences
may be pure coincidence (the user being free to name
associations as they so wish), which would lead to an
incorrect change propagation. In fact, no matter how
clever such a calculation might be to avoid such prob-
lems, one significant problem is that the deletion of an
element in MT?2 should result in the appropriate dele-
tion of elements in MT1 — however if the transformation
has no record of which elements in M T2 relate to those
in MT1 it will be unable to perform such a deletion re-
liably.

One can see from these problems that the problem
of change propagation is harder than first imagined. At

Personnel
Employee fmployees manager Manager

(a) The Personnel package in the
ML2 language.

Personnel
manager
Employee Manager

(b) The Personnel package in the
ML1 language.

Fig. 3 Models with different types of associations.

a minimum, it seems that information needs to be kept
about which elements are related to which by a trans-
formation — this is typically called tracing information.
I classify a transformation which can record and utilise
such information to propagate changes as a persistent
transformation. However this is not only part of the re-
quired solution as shall be seen in section 3.5.

1.8 A method for model transformations

Based on examples, such as those just presented, a sim-
ple method for model transformations can be discerned
which can significantly aid understanding of the gen-
eral problem and also allows the comparison of different
approaches by describing where, and how well, any ap-
proach fits into the method. Because, as shall be seen
in chapter 2, model transformations come in various dif-
ferent flavours, this method is intentionally high level
and therefore applicable to the majority of practical ap-
proaches. For example, in a simplistic approach encoded
in an OO language this method would apply to the en-
tire program; in a rule based approach, this method can
be seen to apply to each rule. The example in figure 4 is
intended to help visualise these parts:

1. Searching a model to identify appropriate elements

transform.

Transforming elements.

3. The retention (in some manner) of tracing informa-
tion recording which elements in a model are related
by the transformation to elements in other models.

4. Detecting updates in one model involved in the trans-
formation and performing relevant operations in the
transformations other affected models.

N

Whilst a minimal approach to model transformations
need only perform parts one and two, a complete ap-
proach would be capable of performing all parts: a model
transformation technology which limits itself to merely
taking in one model and spiting another model out fails
to tackle all the problems relevant to tool integration
outlined in section 1.2. However, although the method
comprises four main parts, it is not necessary for these

Laurence Tratt

Source model

;

(a) Initial model.

Target model Target model

Source model

\
g
.
.
il
.
.
0

(b) Identifying elements.

Source model Source model

! !

(¢) Transforming.

Target model Target model

(d) Creating tracing infor-
mation.

Source model Target model Source model Target model

! !

(e) Altering a model.

(f) Propagating changes.

Fig. 4 Transforming a model.

parts to correspond to distinct phases of execution. Parts
one and two are often partially intertwined and it would
be surprising if parts two and three in particular were
implemented as separate phases because the required in-
formation for part three will be determined by what hap-
pens in part two.

2 Background
2.1 Program transformations

Transformations in a computing context are far from
a new idea, cropping up in many contexts, in more or
less formal ways. For example, compilers are effectively
program transformations which (hopefully) preserve the
semantics? of the input source code when they trans-
form it into the output binary. Literature available for
specific types of program transformation such as com-
pilation and optimization abound, from practical guides
(e.g. the classic ‘dragon book’ [2]) to theoretical work on
the validity of applying such transformations (e.g. [32]
which gives a condensed history of compiler transforma-
tion proofs before presenting state of the art work in the
field).

Program transformations are typically unidirectional
stateless transformations, and deal with a restricted sub-
ject area. Model transformations encompass a much wider
scope (see e.g. [12,23]).

2 Note that due to the extreme difficulties involved it is rare
for this, or any other, sort of transformation to be formally
proved as preserving semantics.

Model transformations and tool integration
2.2 XSLT

XSLT [48] is an XML transformation technology which
has gained a significant amount of attention over the
past few years. XSLT initially seems a promising candi-
date in which to realise model transformations, because
representing models in XML is a common exercise. As
noted in Bex et al. [10], ‘XSLT is highly adequate for the
simple transformations it was intended for (recall that
XSL was originally intended just for XML to HTML
transformations)’ but has serious shortcomings for more
advanced transformations. Interestingly it took several
years before a formal proof was constructed that XSLT
is Turing complete [30]> and — as both the relatively re-
cent timing and need for existence of the proof may sug-
gest — in practical usages one quickly hits the limits as to
the sorts of transformations XSLT can naturally express.
Peltier et al. [38] consigned XSLT to the lowest-level of
their MTRANS model transformation framework, citing
general readability issues as well as specifics such as the
lack of acceptable error reporting.

A final issue which makes expressing model trans-
formations in XSLT less than ideal is that XML docu-
ments are represented as a tree structure; models are,
in the general case, naturally representable as graphs.
Although graphs can be represented by trees with link
references between nodes, the difference in representa-
tion can lead to an unnatural representation of many
types of model transformations.

2.8 Graph transformations

A particular type of transformation which has gained
a lot of traction in theoretical circles since their intro-
duction in the late 60’s are graph transformations (see
[4]). Note that the term ‘graph transformation’ is poten-
tially misleading, since in this context it is used to refer
to a particular category of rule-based transformations
that are typically represented diagrammatically; various
other types of transformations operate on graphs but are
not termed ‘graph transformations’. Graph transforma-
tions have a number of attractive theoretical properties,
and for our purposes the fact that models are well rep-
resented as graphs is particularly appealing.

Early work involving graph transformation and mod-
els largely centred on their use in defining the semantics
of different modelling diagram types, such as the con-
tinuing work of Gogolla et al. [25,24,26]. More recent
work by Kiister et al. [31] has defined a more general
model transformation approach using graph transfor-
mation as the underlying mechanism, allowing them to
draw upon some of the properties of graph transforma-
tions in a model transformation context. Heckel et al.

3 See http://www.unidex.com/turing/utm.htm for the
Turing machine implementation the proof is based upon.

[28] have continued this work, reasoning about conflu-
ence with typed attributed graphs. [15,34,41,47,51] have
all proposed model transformation approaches which are
essentially based upon simplified views of graph trans-
formations, as is Agrawal et. al’s more mature GReAT
system [1].

Although graph transformations can be used to prove
interesting properties about transformations, only a fairly
small minority of useful transformations are currently
amenable to such analysis thus reducing the usefulness
of such analysis in practical situations. Most of the graph
transformation approaches detailed in this section give
little or no attention to mechanisms for structuring graph
transformation systems despite the fact that large graph
transformation systems appear to need such mechanisms
as much as large procedural programs (see [40] for an ex-
ample of a structuring mechanism based on UML pack-
ages for a graph transformation system). Partly because
of this lack of structuring mechanisms, solutions based
on the graph transformation paradigm are often per-
ceived by users to be complex beasts [19] and hence
have seen relatively little real-world usage. Few graph
transformation based systems support change propaga-
tion; Becker et. al [8] is one of the few to provide slightly
limited support for this important aspect of model trans-
formations.

2.4 Other approaches

Various stand alone works have been published on model
transformations that are not covered elsewhere in this
paper. Two of the first works in the area are that of
Lano [33] and Evans [21] who both define transforma-
tions with respect to an underlying semantics of class
diagrams. In both cases these transformations are not
directly executable: such work can therefore be seen as
specifying model transformations. Later work such as
that of the 2U group [16] and Akehurst and Kent [3] re-
fine the use of class diagrams and OCL for transforma-
tion specifications. More recent work has concentrated
on executability, such as that of as Whittle [50] who
used the logic programming language Maude to execute
and verify simple transformations.

2.5 QVT

Model transformations are a vital factor in the realiza-
tion of the OMG’s MDA vision [12], which is based on
the idea of progressively facilitating more and more soft-
ware development with models. Implicit in this vision
is that models will need to be manipulated into various
different forms. For example: transforming models repre-
senting one technology into others which represent differ-
ent technologies; abstracting and refining models; merg-
ing models; and so on. To this end a Request For Pro-
posals (RFP) was issued by the OMG ‘MOF 2.0 Queries

/ Views / Transformations (QVT)’ [35] in 2002 to seek
a standard way of performing model transformations.

There were eight initial submissions to the RFP; at
the time of initial writing seven remain. This paper is
not intended to enumerate the individual submissions;
see Gardner et al. [22], and Czarnecki and Helsen [19]
who propose a detailed classification scheme for trans-
formation approaches.

The following sections first detail two important points
at the extreme of the QVT spectrum before briefly enu-
merating other related approaches which fall in between
the two.

2.5.1 TRL The Transformation Rule Language (TRL)
language [37] is in essence a standard rule-based imper-
ative language specialized for UML-esque model trans-
formations. This comes in several forms: concepts such
as ‘transformation rule’ are raised to first-class status;
some of the information recorded in the new first class
elements is used for additional purposes e.g. to create
tracing information; extra syntax is provided for e.g. ac-
cessing the stereotype of a UML model element. Rules
consist of a crude signature (comprising the types of the
source and target model elements) and an imperative
body. The syntax and semantics of actions are essen-
tially that of the Object Constraint Language (OCL)
[36] augmented with side-effects and a small handful of
necessary control structures.

The benefit of such an approach is its relative fa-
miliarity to users, and the knowledge that largely im-
perative solutions traditionally lead to efficient imple-
mentations. However TRL is only capable of expressing
unidirectional stateless transformations, due to the im-
perative nature of rule actions.

2.5.2 zMOF The xMOF language [17] is a constraint
solving model transformation system aiming to declar-
atively specify persistent bidirectional transformations.
An xMOF program consists of a number of OCL con-
straints about model elements involved in a transfor-
mation. The declarative approach taken aims to rid the
implementer of the tedious and verbose book-keeping in-
herent in imperative approaches. Also, because the rela-
tionship between two models need not be stated in terms
of inputs and outputs, the transformation is potentially
bi-directional, and change propagation can also be han-
dled automatically, as a change in one model will cause
constraints on another to fail bringing the xMOF engine
into life.

This approach has several severe disadvantages from
a practical standpoint. For example it places a burden
on the user to ensure that the constraints specified com-
pletely describe the transformation — failure to do so
will result in a system which produces arbitrary results,
or runs out of memory as it attempts to enumerate all
matching values. Due to the complex interaction be-
tween constraints, it is arguably easier in a constraint

Laurence Tratt

solving situation to create a non-terminating program
than in other paradigms.

Significantly, constraint solving systems easily lead
to solutions which can take potentially unbounded time
to execute. Constraint programming, as detailed by e.g.
Barték [7] is a challenging and relatively unexplored area
of research (despite existing for over four decades [43]),
which has shown potential in small, tightly defined areas,
but there is little precedent for using it on a task of the
order of complexity of model transformations.

2.5.8 Other approaches The DSTC QVT submission
[20] is a declarative solution which can specify unidirec-
tional persistent transformations, although it is unclear
how the tracing information it creates is used for prop-
agating changes.

The QVT-Partners — of whom the author is a mem-
ber — submission [39] is a hybrid solution which offers
declarative specifications and imperative implementations.
Although the solution can automatically create tracing
information, the largely imperative nature of implemen-
tations complicates change propagation (but see [44] for
a suggested solution).

Bézivin et al.’s ATL [11] wraps imperative bodies in-
side declarative shells to specify unidirectional transfor-
mations; the imperative aspects are less important than
in other ‘hybrid’ approaches such as that of the QVT-
Partners.

2.6 Summary of existing approaches

The majority of current model transformations can be
categorised as declarative. This is the result of a simple
observation: in an imperative model transformation ap-
proach, such as TRL, one explicitly creates new elements
in the target model, which effectively rules out the abil-
ity to propagate changes. Rather than explicitly creating
and altering elements, declarative solutions instead as-
sert their existence and state. So if an assertion about
the existence of an element is made, and such an element
doesn’t exist, it is created by the engine; otherwise the
existing element is left as is. Importantly no duplicates
are created in such a situation; alterations to elements
are performed in a similar manner. This method works
well for both initial transformations and for subsequent
updates, as from the transformations viewpoint there is
no discernible difference between an empty target model
and one that already contains elements from a previous
transformation.

At this point, it is important to note that although
the above text uses ‘declarative’ and ‘imperative’ with
the suggestion that only a fully declarative solution is
capable of providing a practical solution to persistent
model transformations, this is not in fact the case. The
only aspect of any solution that needs to be declarative is
that which deals with the relationship between elements

Model transformations and tool integration

in the source and target models. However the only solu-
tions which are currently capable of doing this are those
where the entire computation is specified declaratively.
This is despite the fact that the details of the compu-
tation which leads to the declaration of a relationship
between source and target model elements is irrelevant
to the declaration itself.

3 Technologies and techniques for model
transformations

The previous section concluded with the observation that
most current model transformation approaches can be

classified as declarative. The purpose behind much, though

not all, of the work in this paper was to develop appropri-
ate technologies for performing model transformations in
a largely imperative framework, such that change prop-
agation is still feasible. The reason for this is no more
complicated than a simple wish to explore a yet as un-
tried approach to model transformations; since we are
still in the beginning stages of this exciting area, explor-
ing as many approaches as possible seems the best way
to discover the most appropriate approaches.

This section presents work that draws upon the QVT-
Partners submission and is implemented partly by, and
partly in, the Converge programming language [45] (which
has been developed to provide a flexible workbench for
experimentation of this sort). Together, the technologies
and techniques in this section provide a basis for creat-
ing unidirectional persistent transformations. After mo-
tivation and explanation of the individual technologies
and techniques, section 3.5.1 presents an example of a
transformation that shows how the different parts form
a coherent whole.

3.1 Imperative language with backtracking

Converge is an imperative language, syntactically sim-
ilar to Python [46] with semantics heavily inspired by
those of Icon [27]. In essence it is a strongly, dynami-
cally typed, expression based, imperative language.
One of the chief problems with standard imperative
approaches comes when identifying elements. Frequently
arbitrary levels of backtracking are required in such iden-
tification; it is also generally required that model ele-
ment access and storage are minimised due to the rela-
tive expensive of such operations in terms of time and
space, particularly when a model repository is used. In
standard imperative approaches, one typically faces pro-
hibitively large amounts of book-keeping to implement
the necessary backtracking (see section 1.1) even before
the problem of minimizing model element access is con-
sidered. Converge solves this by utilizing Icon-esque re-
sumable functions (known as generators in Icon) which
can produce more than one return value over multiple in-
vocations; these reduce the book-keeping necessary when

iterating over models, provide lazy evaluation of model
elements, and also allow for the trivial expression of a
limited form of automatic backtracking.

A simple example of this important feature is as fol-
lows. Imagine we have a method on a model get_classes()
which successively generates all the classes in a model,
and another method is_leaf_class(c) which only suc-
ceeds if ¢ is not generalized by any other classes. In
Converge one can print all non-abstract leaf classes as
follows:

for Sys.writeln(a := model.get_classes() & \
model.is_leaf_class(a) & not a.is_abstract & a)

In essence, the & operator joins expressions to allow back-
tracking to happen amongst them. In this scenario, the
get_classes method generates a class, and assigns it to
a. If the is_leaf_class method then fails when passed a,
backtracking occurs and get_classes is resumed to gen-
erate another class. If it succeeds, the class is then tested
to see if it is abstract. If it is not, control backtracks to
the last generator (the get_classes call); otherwise the
value of a is passed to the Sys.writeln method to print
the class to screen. The for statement continues resum-
ing the get_classes generator until it is exhausted.

8.2 An extensible language

Most programming languages, and most model transfor-
mation languages, are fixed in the sense that one can not
add to their feature set. This often leads to the creation
of small domain specific languages that might have fared
better if the specific features had been embedded in a
more general purpose language — a Domain Specific Em-
bedded Language (DSEL) [29]. Since as stated earlier,
there is no consensus as to which is the best approach
for model transformations — if indeed one approach will
ever satisfactorily cover all possibilities — it seems pru-
dent to build model transformation languages that are
capable of being arbitrarily extended by the user. Con-
verge allows compile time meta-programming [18] that
is heavily influenced by that of Template Haskell [42].
As seen in the example on page 9, this allows arbitrary
transformation approaches to be tried within a common
framework, either separately or in conjunction with one
another.

3.8 Rule based approach

One of the many reasons why the example in section 1.1
can be considered a failure is the tight coupling between
the different sub-parts of the transformation encoded via
multiple if statements. Even moving code into separate
functions would still require altering one central piece of
code when a new concept is introduced into the trans-
formation. A more practical approach is that taken by

rule-based languages (e.g. ELAN [14]), which allow one
to define multiple independent rules of the form guard
=> action. At runtime, rules are fired depending on
their guard not, as in more traditional languages, based
on the name of the rule.

One problem sometimes encountered in rule based
approaches is that a given piece of data can match sev-
eral rules. At this point, use is made of rules relative
precedences, which are often based on the order of their
definition. However, transformations sometimes request
the transformation of a chunk of data knowing which of
several possible rules they would prefer to be executed.
I therefore also assign names to rules, and allow rules
to be explicitly invoked with the caveat that the data
passed to any such rule must still satisfy its guard.

Having named rules also opens up the potential for
interesting approaches to transformation composition —
the combining together of individual model transforma-
tions. Out of the approaches discussed in this paper, only
that of the QVT-Partners makes a serious attempt at
composing transformations by means of operators such
as or and and. Composition raises a number of inter-
esting questions, particularly when used to merge the
results of two or more model transformations together
as in the QVT-Partners and composition. Hitherto there
has been little exploration of the consequences of this. It
seems likely that work in the aspect orientation commu-
nity, such as that of Bergmans and Aksit [9], will offer
pointers to scalable approaches to composition.

3.4 Pattern matching

A useful technique when specifying transformations is
to use patterns [6]. Patterns in this context should be
seen as being analogous to textual regular expressions as
found in e.g. Perl [49], or the patterns work of Biggerstaff
[13] — they are a concise way of expressing many types
of constraints on items, generally through the use of a
specific pattern language. Patterns are thus not a novel
technique and have proved themselves in the field as a
practical means of expressing transformations.

Since this may be an unfamiliar concept to some
readers, a simple example of a pattern language expressed
in the default that comes with Converge:

(Package) [name=<n>, parents= \
Set{(Package) [name="Personnel"] |<P>}]

This particular model pattern is a simple object pattern,
and will match successfully against an instance of the
Package model element. The name of the package can
be any value and will be assigned to the variable n. The
object pattern contains a set pattern for the parents
slot. This will only match successfully against a set which
contains a minimum of one object, which must be an in-
stance of the Package model element whose literal name
is "Personnel"; all other elements of the set will be

)

Laurence Tratt

assigned to P. In other words, this pattern will match
against any package which generalizes Personnel. Com-
pare this with the far more verbose imperative code, or
OCL constraints, required to specify what this pattern
states.

Pattern languages typically have two main problems:
due to the trade off between brevity and expressivity,
they are generally not computationally complete; differ-
ent types of pattern languages are useful in different cir-
cumstances. The first problem is relatively easily solved
by intermixing arbitrary computations in the host lan-
guage with patterns. The second problem is solved by
not making any particular pattern language a fundamen-
tal part of the host language, but utilizing the support
for DSEL creation to allow users to provide their own
pattern languages if appropriate.

3.5 Change propagation

Practical approaches to change propagation are vital
to the success of model transformations, particularly in
the area of tool integration. Few approaches currently
make a serious effort to tackle the problem. For example,
Braun and Marschall [15] suggest that bijective trans-
formations are sufficient to solve this problem, which is
of limited practical use as many useful transformations,
such as the ML1 to ML2 transformation, can never pos-
sibly be injective (and hence are not bijective). Similarly,
simply creating tracing information, as in TRL, is no
guarantee of the ability to propagate changes.

The approach I have developed allows the creation
of unidirectional persistent transformations, with an al-
gorithm which is capable of propagating simple types
of change. Change propagation is an inherently difficult
area, particularly in corner cases where one can usu-
ally find examples which will cause an algorithm to pro-
duce sub-optimal results. The challenge is to provide a
solution which works well for most common scenarios.
In essence the approach is based on a combination of
tracing information and the calculation of unique iden-
tifiers to determine which target elements relate to which
source elements.

Tracing information is automatically created and stored,

utilizing the fact that transformation rules are classes
whose instances can serialize themselves in a manner
suitable for the particular environment they are operat-
ing within. This is important for tools, where transfor-
mations may be required to persist in memory at some
points for efficiency reasons, and at others to be serial-
ized to disk e.g. to be transferred to a different machine.

Elements in the output model are assigned identi-
fiers based on the identifiers of the set of objects in the
source model that were transformed; this calculation on
an unchanged model should always return an identical
result. For example a source element whose identifier is
p, and which is referenced through an element whose

Model transformations and tool integration

identifier is a, will generate an output element identi-
fier of the form a:p. This scheme allows the same source
element to be involved in different parts of the transfor-
mation whilst still leading to a unique output identifier
in each situation. For example in the same transforma-
tion p might be referenced through b and then ¢ which
will generate an identifier of the form b:c:p. Note that
it is necessary to have a convention for ensuring unique
identifiers in certain contexts e.g. a for loop.

When a change is to be propagated from the source to
the target model, the basic algorithm is as follows. The
transformation is effectively rerun from scratch, with the
unique identifiers generated by source model elements
used as part of the declarative specification of the ex-
istence or state of target model elements. At the same
time, a new set of tracing information is created. The
new tracing information is then compared to the old,
and any target model element referenced in the old trac-
ing information but not in the new is then deleted. The
precise effect of such deletion is determined by the par-
ticular change propagation algorithm, and is currently
fairly simplistic; the element and pointers to it within
any elements are removed.

Although most changes are propagated successfully,
certain changes in the source model can lead to an ex-
cessively inefficient propagation stage or to an ill-formed
target model; currently this is not correctly detected,
although such detection appears to be possible and fea-
sible. A direct analogy to source code revision systems
such as CVS can be drawn here. In such systems, the vast
majority of changes which users make to files integrate
into the repository correctly. However in some situations
the system is unable to automatically reconcile overlap-
ping changes made by two developers and has to request
the users aid in resolving the conflict. A similar need is
found in model transformations, although currently it is
under explored.

3.5.1 Example 1 now present an example of a simple
transformation rule which transforms ML1 packages to
ML2 packages — the most complex aspect of the transfor-
mation in section 1.1,— in Converge. This example shows
the technologies and techniques presented in the previ-
ous sections working in conjunction with one another.

import ModTr

class Package_To_Package of \
ModTr.Transformation_Class:
$ModTr.transformation() :
source_pattern := \
"(ML1.Package) [name=<n>, parents=<p>, \
elements=<e>]"
target_pattern := "(ML2.Package) [name=n, \
elements=ne]"
func target_where():
ne := e
for parent in p:

parent := ModTr.transform(p)
for element in parent.elements:
ne.assert_existence (element)

A full explanation of this is quite involved; however some
aspects in particular need explanation. As Converge has
a Python style syntax, blocks are synonymous with in-
dentation. The ModTr package contains a number of trans-
formation related components which are imported whole-
sale by the transformation, and which together consti-
tute a DSEL for model transformations — a completely
separate package could be created which implemented
a partially or entirely different DSEL if required, since
none of the transformation features are built directly
into the language.

The $ operator introduces a ‘macro splice’; the transformation

call after it means that the named function will be called
at compile time with the three fields source_pattern,
target_pattern and target_where passed in a dictio-
nary as a final parameter. These three fields have as
their values the abstract syntax tree of the text above?.
The source and target patterns, and their associated
source_when and target_where functions, form the core
of generated routines which identify and create or alter
elements. Having analysed the source and target pat-
terns for free and for bound (variables between trian-
gular brackets) variables, the transformation function
then transparently alters the target_where function so
that the e variable from the source pattern is present
in the function, and also that the final value of the ne
variable is positioned correctly in the target pattern.
The overall result of the macro splice is to trans-
form the fields above, at compile time, into an efficient
transformation rule. The generated code is larger, and
considerably more complex, than the relatively simple
code above. The complexity is due to the resulting trans-
formation being persistent, and capable of propagating
changes. Most of the machinery responsible for this is
generated from the source and target patterns and is
thus largely invisible to the user. However, the user must,
when writing code in the standard imperative language,
adhere to certain rules; an example can be seen in the

target_where function with the call to the assert_existence

which ensures that element is present in the set ne with-
out explicitly altering ne itself. Importantly the user
must not explicitly alter the target model.

The final piece of the puzzle is the of keyword, which
signifies that the Package_To_Package class is an in-
stance of the Transformation Class class; one side ef-
fect of this in the simple ModTr DSEL is to automat-
ically register the transformation rule with the engine.
When the ModTr.transform function is called, all rel-
evant transformation rules are called, with overlaps in
rule guards being resolved in favour of rule definition
order.

4 For those familiar with Template Haskell, this is equiva-
lent to putting the values between the [| and |] operators.

10

In summary, what the example shows is an transfor-
mation in an imperative language which by utilizing a
DSEL for model transformations allows persistent trans-
formations in a rule-based style to be created by forcing
the relations between models to be specified declara-
tively, but not the rest of the computation. Transfor-
mations of this sort fulfil the requirements for tool inte-
gration as outlined in section 1.2.

4 Future work

We are still very much in the beginning stages of creating
appropriate technologies for model transformations. It is
far too early to decisively conclude which of many differ-
ent approaches, if any, is the most promising. Therefore
one of the main challenges for the community is sim-
ply to continue exploring different approaches to model
transformations. This paper has attempted to aid in this
by exploring an imperative solution that allows declara-
tions between models via DSELs. Many other challenges
remain, for example: what are useful types of transfor-
mation composition? How frequently do changes in a
persistent transformation need to be propagated to en-
sure consistent models and efficient execution, and is it
possible to minimise the proportion of the transforma-
tion that is rerun? What are appropriate algorithms for
change propagation and how does one resolve conflicts?
We have partial answers for some of these questions, but
many remain largely unanswered.

In terms of the particular approach presented in this
paper, two main challenges remain. One is to continue
work on a production quality implementation. Currently
the bootstrap version of Converge is finished and al-
lows reasonable experimentation but is too slow for most
practical purposes. A much faster, scalable version is
nearing completion. This will allow the completion of
the bootstrap compiler; currently the DSEL facilities are
hard coded into the compiler rather than calling user
code. The second main challenge is to continue writing
transformations, noting any problems and extending or
modifying the approach as appropriate. Model transfor-
mations are an inherently practical task, with most real
progress coming from practical experience.

5 Conclusions

In this paper I have given an overview of model transfor-
mations, and outlined how they can play a critical role
in enabling tool integration. Persistent model transfor-
mations were shown to allow advanced usage scenarios
that are currently largely unfeasible. I then presented a
review of current model transformation approaches that
identified common weaknesses and unexplored avenues.
Based on this I then identified a new approach to model
transformations that is capable of providing a flexible,

Laurence Tratt

efficient, and practical platform for creating model trans-
formations that facilitate advanced tool integration. By
utilising an imperative paradigm capable of backtrack-
ing, and allowing user specified transformation DSEL’s
to handle declarative aspects, I demonstrated that this
approach provides not only a solid framework in which
to carry out continued experimentation, but also a prac-
tical means of performing model transformations in cir-
cumstances that do not necessarily need to have been
considered during the languages initial design.

Acknowledgements 1 would particularly like to thank Tony
Clark for his advice and encouragement over the past few
years and for his reading of an early draft; Girish Maskeri
also provided insightful comments on an earlier draft. I would
also like to thank the anonymous referees whose comments
helped improve the presentation of this paper markedly.

This research was partly funded by a grant from Tata
Consultancy Services.

References

1. A. Agrawal, G. Karsai, and F. Shi. Graph transforma-
tions on domain-specific models. Technical report, Insti-
tute for Software Integrated Systems, Vanderbilt Univer-
sity, November 2003.

2. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Prin-
ciples, Techniques and Tools. Addison Wesley, 1986.

3. D. H. Akehurst and S. J. H. Kent. A relational approach
to defining transformations in a metamodel. In J.-M.
Jézéquel, H. Hussmann, and S. Cook, editors, UML 2002
— The Unified Modeling Language : 5th International
Conference, pages 243 — 258. Springer-Verlag, 2002.

4. M. Andries, G. Engels, A. Habel, B. Hoffmann, H.-
J. Kreowski, S. Kuske, D. Plump, A. Schiirr, and
G. Taentzer. Graph transformation for specification and
programming. Technical Report 7, University of Bremen,
1999.

5. B. Appukuttan, T. Clark, A. Evans, S. Kent, G. Maskeri,
P. Sammut, L. Tratt, and J. S. Willans. Unambiguous
uml submission to uml 2 infrastructure rfp, September
2002. OMG document ad/2002-06-14.

6. B. K. Appukuttan, T. Clark, S. Reddy, L. Tratt, and
R. Venkatesh. A pattern based model driven approach to
model transformations, November 2003. Metamodelling
for MDA 2003.

7. R. Bartak. Constraint programming: What is behind?
In Proceedings of CPDC99, pages 7 — 15, June 1999.

8. S. M. Becker, T. Haase, and B. Westfechtel. Model-based
a-posteriori integration of engineering tools for incremen-
tal development processes. SoSYM, 2004. To appear.

9. L. M. Bergmans and M. Aksit. How to deal with encapsu-
lation in aspect-orientation. In Proceedings of OOPSLA
2001 Workshop on Advanced Separation of Concerns in
Object-Oriented Systems, October 2001.

10. G. J. Bex, S. Maneth, and F. Neven. A formal model for
an expressive fragment of XSLT. Information Systems,
28(1):21-39, 2002.

11. J. Bézivin, G. Dupé, F. Jouault, G. Pitette, and J. E.
Rougui. First experiments with the ATL model trans-
formation language: Transforming XSLT into XQuery.

Model transformations and tool integration

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

In 2nd OOPSLA Workshop on Generative Techniques in
the context of Model Driven Architecture, October 2003.
J. Bézivin and S. Gérard. A preliminary identification
of MDA components. In Generative Techniques in the
context of Model Driven Architecture, Nov 2002.

T. J. Biggerstaff. Pattern matching for program gener-
ation: A user manual. Technical Report TR-98-55, Mi-
crosoft Research, 1995.

P. Borovansky, C. Kirchner, H. Kirchner, P.-E. Moreau,
and M. Vittek. Elan: A logical framework based on com-
putational systems. In Proc. first international workshop
on rewriting logic, 1996.

P. Braun and F. Marschall. Transforming object oriented
models with BOTL. International Workshop on Graph
Transformation and Visual Modeling Techniques, 72(3),
2002.

T. Clark, A. Evans, and S. Kent. Initial submission
to OMG RFP’s ad/00-09-01 (UML 2.0 infrastructure)
ad/00-09-03 (UML 2.0 OCL), 2001.

Compuware and Sun. XMOF queries, views and trans-
formations on models using MOF, OCL and patterns,
August 2003. OMG document ad/2003-08-07.

K. Czarnecki and U. W. Eisenecker. Generative Pro-
gramming. Addison Wesley, 2000.

K. Czarnecki and S. Helsen. Classification of model
transformation approaches. In J. Bettin, G. van
Emde Boas, A. Agrawal, E. Willink, and J. Bézivin, edi-
tors, Second Workshop on Generative Techniques in the
context of Model Driven Architecture, October 2003.
DSTC, IBM, and CBOP. MOF query / views / trans-
formations first revised submission, August 2003. OMG
document ad/2003-08-03.

A. Evans. Reasoning with UML class diagrams. In Sec-
ond IEEE Workshop on Industrial Strength Formal Spec-
ification Techniques, October 1998.

T. Gardner, C. Griffin, J. Koehler, and R. Hauser. Query
/ views / transformations submissions & recommenda-
tions towards final standard, August 2003. OMG docu-
ment ad/03-08-02.

A. Gerber, M. Lawley, K. Raymond, J. Steel, and
A. Wood. Transformation: The missing link of MDA. In
A. Corradini, H. Ehrig, H.-J. Kreowski, and G. Rozen-
berg, editors, Graph Transformation: First International
Conference, ICGT 2002, pages 90-105, October 2002.
M. Gogolla. Graph transformations on the UML meta-
model. In J. D. P. Rolim, A. Z. Broder, A. Corradini,
R. Gorrieri, R. Heckel, J. Hromkovic, U. Vaccaro, and
J. B. Wells, editors, ICALP Workshop on Graph Trans-
formations and Visual Modeling Techniques, pages 359—
371. Carleton Scientific, 2000.

M. Gogolla and F. Parisi-Presicce. =~ State diagrams
in UML: A formal semantics using graph transforma-
tions. In M. Broy, D. Coleman, T. S. E. Maibaum, and
B. Rumpe, editors, Proceedings PSMT’98 Workshop on
Precise Semantics for Modeling Techniques. Technische
Universitat Miinchen, TUM-19803, 1998.

M. Gogolla, P. Ziemann, and S. Kuske. Towards an in-
tegrated graph based semantics for UML. In P. Bottoni
and M. Minas, editors, Proc. Int. Workshop on Graph
Transformation and Visual Modeling Techniques (GT-
VMT 2002), volume 72 of Electronic Notes in Theoretical
Computer Science, 2003.

27

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

11

. R. E. Griswold and M. T. Griswold. The Icon Program-
ming Language. Peer-to-Peer Communications, third edi-
tion, 1996.

R. Heckel, J. M. Kiister, and G. Taentzer. Confluence
of typed attributed graph transformation systems. In
A. Corradini and H.-J. Kreowski, editors, Proceedings
First International Conference on Graph Transformation
(ICGT 02), pages 161 — 176. Springer-Verlag, October
2002.

P. Hudak. Building domain-specific embedded lan-
guages. ACM Computing Surveys, 28(4), December 1996.
S. Kepser. A proof of the Turing-completeness of XSLT
and XQuery. Technical Report SFB 441, Eberhard Karls
Universitat Tiibingen, June 2002.

J. M. Kiister, R. Heckel, and G. Engels. Defining and
validating transformations of UML models. In IEEE
Symposium on Visual Languages and Formal Methods,
October 2003.

D. Lacey, N. D. Jones, E. V. Wyk, and C. C. Frederiksen.
Proving correctness of compiler optimizations by tempo-
ral logic. In Proc. 29th ACM Symposium on Principles
of Programming Languages, pages 283—294. Association
of Computing Machinery, 2002.

K. Lano and J. Bicarregui. UML refinement and abstrac-
tion transformations. In Second Workshop on Rigorous
Object Oriented Methods: ROOM 2, Bradford, May 1998.
T. Levendovszky, G. Karsai, M. Maroti, A. Ledeczi, and
H. Charaf. Model reuse with metamodel-based trans-
formations. In C. Gacek, editor, ICSR, volume 2319 of
Lecture Notes in Computer Science. Springer, 2002.
Object Management Group. Request for Proposal: MOF
2.0 Query / Views / Transformations RFP, 2002. OMG
document ad/2002-04-10.

Object constraint language specification, 1997. OMG
document ad/97-08-08.

OpenQVT. Response to the MOF 2.0 query / views /
transformations RFP, August 2003. OMG document
ad/2003-08-05.

M. Peltier, J. Bézivin, and G. Guillaume. MTRANS: A
general framework, based on XSLT, for model transfor-
mations. In WTUML 2001, Italy, April 2001.
QVT-Partners. First revised submission to QVT RFP,
August 2003. OMG document ad/03-08-08.

A. Schiirr and A. J. Winter. UML packages for pro-
grammed graph rewriting systems. In Proc. TAGT 98
- Theory and Application of Graph Transformations,
November 1998.

S. Sendall. Combining generative and graph transfor-
mation techniques for model transformation: An effec-
tive alliance? In Generative techniques in the context of
MDA, October 2003.

T. Sheard and S. P. Jones. Template meta-programming
for Haskell. In Proceedings of the Haskell workshop 2002.
ACM, 2002.

I. Sutherland. Sketchpad: a man—machine graphical com-
munication system. In Proceedings Spring Joint Com-
puter Conference, IFIPS, pages 329-346, 1963.

L. Tratt and T. Clark. Issues surrounding model con-
sistency and QVT. Technical Report TR-03-08, Depart-
ment of Computer Science, King’s College London, De-
cember 2003.

12

45.

46.

47.

48.

49.

50.

51.

L. Tratt and T. Clark. Model transformations in Con-
verge, October 2003. Workshop in Software Model En-
gineering (WiSME) 2003.

G. van Rossum. Python 2.2 reference manual, 2001.
http://www.python.org/doc/2.2/ref/ref .html.

D. Varré and A. Pataricza. UML action semantics for
model transformation systems. Periodica Politechnica,
2003.

W3C. XSL Transformations (XSLT), 1999.
http://www.w3.org/TR/xslt.

L. Wall, T. Christiansen, and J. Orwant. Programming
Perl. O’Reilly, third edition, 2000.

J. Whittle. Transformations and software modeling lan-
guages: Automating transformations in UML. In J.-M.
Jézéquel, H. Hussmann, and S. Cook, editors, UML 2002
— The Unified Modeling Language : 5th International
Conference, pages 227 — 242. Springer-Verlag, 2002.

E. D. Willink. UMLX : A graphical transformation lan-
guage for MDA. In 2nd OOPSLA Workshop on Genera-
tive Techniques in the context of Model Driven Architec-
ture, October 2003.

Laurence Tratt

