167 research outputs found

    Emergence of ferroelectricity at the morphotropic phase boundary of ultrathin BiFeO3_3

    Full text link
    We demonstrate the robustness of polarization in ultrathin compressive strained BiFeO3_3 single layers and heterostructures during epitaxial thin-film growth. Using in-situ optical second harmonic generation (ISHG), we explore the emergence of ferroelectric phases at the strain-driven morphotropic phase boundary in the ultrathin regime. We find that the epitaxial films grow in the ferroelectric tetragonal (T-) phase without exhibition of a critical thickness. The robustness of this high-temperature T-phase against depolarizing-field effects is further demonstrated during the growth of capacitor-like (metal|ferroelectric|metal) heterostructures. Using temperature-dependent ISHG post-deposition, we identify the thickness-dependent onset of the monoclinic distortion in the T-matrix and trace the signature of the subsequent emergence of the strain-relaxed rhombohedral-like monoclinic phase. Our results show that strain-driven T-phase stabilization in BiFeO3_3 yields a prominent candidate material for realizing ultrathin ferroelectric devices.Comment: 5 pages, 3 figure

    Current-induced switching of YIG/Pt bilayers with in-plane magnetization due to Oersted fields

    Full text link
    We report on the switching of the in-plane magnetization of thin yttrium iron garnet (YIG)/Pt bilayers induced by an electrical current. The switching is either field-induced and assisted by a dc current, or current-induced and assisted by a static magnetic field. The reversal of the magnetization occurs at a current density as low as 10510^5~A/cm2^{2} and magnetic fields of ∼40\sim 40~μ\muT, two orders of magnitude smaller than in ferromagnetic metals, consistently with the weak uniaxial anisotropy of the YIG layers. We use the transverse component of the spin Hall magnetoresistance to sense the magnetic orientation of YIG while sweeping the current. Our measurements and simulations reveal that the current-induced effective field responsible for switching is due to the Oersted field generated by the current flowing in the Pt layer rather than by spin-orbit torques, and that the switching efficiency is influenced by pinning of the magnetic domains

    BiFeO3/La0.7Sr0.3MnO3 heterostructures deposited on Spark Plasma Sintered LaAlO3 Substrates

    Get PDF
    Multiferroic BiFeO3 (BFO) / La0.7Sr0.3MnO3 heterostructured thin films were grown by pulsed laser deposition on polished spark plasma sintered LaAlO3 (LAO) polycrystalline substrates. Both polycrystalline LAO substrates and BFO films were locally characterized using electron backscattering diffraction (EBSD), which confirmed the high-quality local epitaxial growth on each substrate grain. Piezoforce microscopy was used to image and switch the piezo-domains, and the results are consistent with the relative orientation of the ferroelectric variants with the surface normal. This high-throughput synthesis process opens the routes towards wide survey of electronic properties as a function of crystalline orientation in complex oxide thin film synthesis.Comment: 10 pages, 4 figures, Submitted to Applied Physics Letter

    Training the polarization in integrated La0.15Bi0.85FeO3-based devices

    Full text link
    The functionalities of BiFeO3-based magnetoelectric multiferroic heterostructures rely on the controlled manipulation of their ferroelectric domains and of the corresponding net in-plane polarization, as this aspect guides the voltage-controlled magnetic switching. Chemical substitution has emerged as a key to push the energy dissipation of the BiFeO3 into the attojoule range but appears to result in a disordered domain configuration. Using non-invasive optical second-harmonic generation on heavily La-substituted BiFeO3 films, it is shown that a weak net in-plane polarization remains imprinted in the pristine films despite the apparent domain disorder. It is found that this ingrained net in-plane polarization can be trained with out-of-plane electric fields compatible with applications. Operando studies on capacitor heterostructures treated in this way show the full restoration of the domain configuration of pristine BiFeO3 along with a giant net in-plane polarization enhancement. Thus, the experiments reveal a surprising robustness of the net in-plane polarization of BiFeO3 against chemical modification, an important criterion in ongoing attempts to integrate magnetoelectric materials into energy-efficient device

    Composition Dependence of Structural Parameters and Properties of Gallium Ferrite

    Full text link
    We show the effect of composition on structural and magnetic characteristics of pure phase polycrystalline GaFeO (GFO) for compositions between 0.8 <= x <= 1.3. X-ray analysis reveals that lattice parameters of GFO exhibit a linear dependence on Fe content in single phase region indicating manifestation of Vegard's law. Increasing Fe content of the samples also leads to stretching of bonds as indicated by the Raman peak shifts. Further, low temperature magnetic measurements show that the coercivity of the samples is maximum for Ga:Fe ratio of 1:1 driven by a competition between decreasing crystallite size and increasing magnetic anisotropy.Comment: 15 pages with 4 figure
    • …
    corecore