40 research outputs found

    Effect of Applying a Carbon Coating on the Crystal Structure and De-/Lithiation Mechanism of Mn-Doped ZnO Lithium-Ion Anodes

    Get PDF
    The introduction of transition metal dopants such as Fe and Co in zinc oxide enables substantially enhanced reversible capacities and greater reversibility of the de-/lithiation reactions occurring. Herein, we report a comprehensive analysis of the electrochemical processes taking place in Mn-doped ZnO (Zn0.9_{0.9}Mn0.1_{0.1}O) and carbon-coated Zn0.9_{0.9}Mn0.1_{0.1}O upon de-/lithiation. The results shed light on the impact of the dopant chemistry and, especially, its coordination in the crystal structure. When manganese does not replace zinc in the wurtzite structure, only a moderate improvement in electrochemical performance is observed. However, when applying the carbonaceous coating, a partial reduction of manganese and its reallocation in the crystal structure occur, leading to a substantial improvement in the material\u27s specific capacity. These results provide important insights into the impact of the lattice position of transition metal dopants—a field that has received very little, essentially no attention, so far

    Structural and Electrochemical Characterization of Zn1−x_{1-x}Fex_{x}O : Effect of Aliovalent Doping on the Liâș Storage Mechanism

    Get PDF
    In order to further improve the energy and power density of state-of-the-art lithium-ion batteries (LIBs), new cell chemistries and, therefore, new active materials with alternative storage mechanisms are needed. Herein, we report on the structural and electrochemical characterization of Fe-doped ZnO samples with varying dopant concentrations, potentially serving as anode for LIBs (Rechargeable lithium-ion batteries). The wurtzite structure of the Zn1−xFexO samples (with x ranging from 0 to 0.12) has been refined via the Rietveld method. Cell parameters change only slightly with the Fe content, whereas the crystallinity is strongly affected, presumably due to the presence of defects induced by the Fe3+ substitution for Zn2+. XANES (X-ray absorption near edge structure) data recorded ex situ for Zn0.9Fe0.1O electrodes at different states of charge indicated that Fe, dominantly trivalent in the pristine anode, partially reduces to Fe2+ upon discharge. This finding was supported by a detailed galvanostatic and potentiodynamic investigation of Zn1−xFexO-based electrodes, confirming such an initial reduction of Fe3+ to Fe2+ at potentials higher than 1.2 V (vs. Li+/Li) upon the initial lithiation, i.e., discharge. Both structural and electrochemical data strongly suggest the presence of cationic vacancies at the tetrahedral sites, induced by the presence of Fe3+ (i.e., one cationic vacancy for every two Fe3+ present in the sample), allowing for the initial Li+ insertion into the ZnO lattice prior to the subsequent conversion and alloying reaction

    Investigation of undercooled liquid metals using XAFS, temperature scans and ­diffraction

    Get PDF
    Novel techniques and the experimental station for experiments on condensed matter under extreme conditions that have been developed at the BM29 beamline of the European Synchrotron Radiation Facility (ESRF) are described. The experimental setup includes facilities to collect high-quality extended X-ray absorption fine structure (EXAFS) spectra, to perform controlled temperature scans while monitoring the sample absorption for the direct detection of phase transitions, and to collect high-resolution energy-scanning X-ray diffraction (ESXD) data, with recent enhancements through the installation of a two-channel collimator detector system. Facilities for X-ray absorption temperature scans, introduced five years ago, are now exploited for a wide variety of purposes. A method for the measurement of the nucleation rate in undercooled liquids has been proposed recently. All these advances in the experimental setup and techniques, combined with a simple but rigorous X-ray absorption fine structure (XAFS) data analysis scheme for disordered matter, have contributed to make feasible challenging experiments on undercooled liquid matter that were not even conceivable only a few years ago. An example of the application of these methods to undercooled liquid indium (In) is presented

    The potential of eupraxia@sparc_lab for radiation based techniques

    Get PDF
    A proposal for building a Free Electron Laser, EuPRAXIA@SPARC_LAB, at the Laboratori Nazionali di Frascati, is at present under consideration. This FEL facility will provide a unique combination of a high brightness GeV-range electron beam generated in a X-band RF linac, a 0.5 PW-class laser system and the first FEL source driven by a plasma accelerator. The FEL will produce ultra-bright pulses, with up to 1012 photons/pulse, femtosecond timescale and wavelength down to 3 nm, which lies in the so called “water window”. The experimental activity will be focused on the realization of a plasma driven short wavelength FEL able to provide high-quality photons for a user beamline. In this paper, we describe the main classes of experiments that will be performed at the facility, including coherent diffraction imaging, soft X-ray absorption spectroscopy, Raman spectroscopy, Resonant Inelastic X-ray Scattering and photofragmentation measurements. These techniques will allow studying a variety of samples, both biological and inorganic, providing information about their structure and dynamical behavior. In this context, the possibility of inducing changes in samples via pump pulses leading to the stimulation of chemical reactions or the generation of coherent excitations would tremendously benefit from pulses in the soft X-ray region. High power synchronized optical lasers and a TeraHertz radiation source will indeed be made available for THz and pump–probe experiments and a split-and-delay station will allow performing XUV-XUV pump–probe experiments.Fil: Balerna, Antonella. Istituto Nazionale Di Fisica Nucleare.; ItaliaFil: Bartocci, Samanta. UniversitĂ  degli studi di Sassari; ItaliaFil: Batignani, Giovanni. UniversitĂ  degli studi di Roma "La Sapienza"; ItaliaFil: Cianchi, Alessandro. Universita Tor Vergata; Italia. Istituto Nazionale Di Fisica Nucleare.; ItaliaFil: Chiadroni, Enrica. Istituto Nazionale Di Fisica Nucleare.; ItaliaFil: Coreno, Marcello. Istituto Nazionale Di Fisica Nucleare.; Italia. Istituto di Struttura della Materia; ItaliaFil: Cricenti, Antonio. Istituto di Struttura della Materia; ItaliaFil: Dabagov, Sultan. Istituto Nazionale Di Fisica Nucleare.; Italia. National Research Nuclear University; Rusia. Lebedev Physical Institute; RusiaFil: Di Cicco, Andrea. Universita Degli Di Camerino; ItaliaFil: Faiferri, Massimo. UniversitĂ  degli studi di Sassari; ItaliaFil: Ferrante, Carino. UniversitĂ  degli studi di Roma “La Sapienza”; Italia. Center for Life Nano Science @Sapienza; ItaliaFil: Ferrario, Massimo. Istituto Nazionale Di Fisica Nucleare.; ItaliaFil: Fumero, Giuseppe. UniversitĂ  degli studi di Roma “La Sapienza”; ItaliaFil: Giannessi, Luca. Elettra-Sincrotrone Trieste; Italia. ENEA C.R. Frascati; ItaliaFil: Gunnella, Roberto. Universita Degli Di Camerino; ItaliaFil: Leani, Juan Jose. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Instituto de FĂ­sica Enrique Gaviola. Universidad Nacional de CĂłrdoba. Instituto de FĂ­sica Enrique Gaviola; ArgentinaFil: Lupi, Stefano. UniversitĂ  degli studi di Roma “La Sapienza”; Italia. Istituto Nazionale di Fisica Nucleare (INFN) Sezione di Roma La Sapienza; ItaliaFil: Macis, Salvatore. UniversitĂ  degli Studi di Roma Tor Vergata; Italia. Istituto Nazionale di Fisica Nucleare (INFN) Sezione di Roma Tor Vergata; ItaliaFil: Manca, Rosa. UniversitĂ  degli studi di Sassari; ItaliaFil: Marcelli, Augusto. Istituto Nazionale Di Fisica Nucleare.; Italia. Consiglio Nazionale delle Ricerche; ItaliaFil: Masciovecchio, Claudio. Elettra-Sincrotrone Trieste; ItaliaFil: Minicucci, Marco. Universita Degli Di Camerino; ItaliaFil: Morante, Silvia. Universita Tor Vergata; Italia. Istituto Nazionale Di Fisica Nucleare.; ItaliaFil: Perfetto, Enrico. Universita Tor Vergata; Italia. Consiglio Nazionale delle Ricerche; ItaliaFil: Petrarca, Massimo. UniversitĂ  degli studi di Roma "La Sapienza"; Italia. Istituto Nazionale Di Fisica Nucleare.; ItaliaFil: Pusceddu, Fabrizio. UniversitĂ  degli studi di Sassari; ItaliaFil: Rezvani, Javad. Istituto Nazionale Di Fisica Nucleare.; ItaliaFil: Robledo, JosĂ© Ignacio. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Instituto de FĂ­sica Enrique Gaviola. Universidad Nacional de CĂłrdoba. Instituto de FĂ­sica Enrique Gaviola; ArgentinaFil: Rossi, Giancarlo. Centro Fermi—Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”; Italia. Istituto Nazionale Di Fisica Nucleare.; Italia. Universita Tor Vergata; ItaliaFil: Sanchez, Hector Jorge. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Instituto de FĂ­sica Enrique Gaviola. Universidad Nacional de CĂłrdoba. Instituto de FĂ­sica Enrique Gaviola; ArgentinaFil: Scopigno, Tullio. Center for Life Nano Science @Sapienza; Italia. UniversitĂ  degli studi di Roma "La Sapienza"; ItaliaFil: Stefanucci, Gianluca. Universita Tor Vergata; Italia. Istituto Nazionale Di Fisica Nucleare.; ItaliaFil: Stellato, Francesco. Universita Tor Vergata; Italia. Istituto Nazionale Di Fisica Nucleare.; ItaliaFil: Trapananti, Angela. Universita Degli Di Camerino; ItaliaFil: Villa, Fabio. Istituto Nazionale Di Fisica Nucleare.; Itali

    The structure of liquid metals probed by XAS

    No full text
    X-ray absorption spectroscopy (XAS) is a powerful technique to investigate the short-range order around selected atomic species in condensed matter. The theoretical framework and previous applications to undercooled elemental liquid metals are briefly reviewed. Specific results on undercooled liquid Ni obtained using a peak fitting approach validated on the spectra of solid Ni are presented. This method provides a clear evidence that a signature from close packed triangular configurations of nearest neighbors survives in the liquid state and is clearly detectable below k ≈ 5 Å−1, stimulating the improvement of data-analysis methods that account properly for the ensemble average, such as Reverse Monte Carlo

    The structure of liquid metals probed by XAS

    No full text
    X-ray absorption spectroscopy (XAS) is a powerful technique to in- vestigate the short-range order around selected atomic species in condensed matter. The theoretical framework and previous applications to undercooled elemental liquid metals are briefly reviewed. Specific results on undercooled liquid Ni obtained using a peak fitting approach validated on the spectra of solid Ni are presented. This method provides a clear evidence that a signature from close packed triangular configurations of nearest neighbors survives in the liquid state and is clearly detectable below k ≈ 5 Å −1 , stimulating the improve- ment of data-analysis methods that account properly for the ensemble average, such as Reverse Monte Carlo

    Role of defective icosahedra in undercooled copper

    No full text
    International audienceWe elucidate the role played by defective icosahedra on the stability of undercooled copper by using molecular-dynamics simulations. Our approach is substantiated by the level of agreement with experiments on a variety of structural properties. We show that not only perfect but also defective icosahedra, embedded in a disordered matrix, lower the local cohesive energy. This has the effect of stabilizing the liquid structure against crystallization. Our work rationalizes experimental findings by identifying the nature of those icosahedral subunits that contribute to the stability of the undercooled liquid
    corecore